A LIMIT THEOREM FOR A BRANCHING PROCESS WITH STATE-DEPENDENT IMMIGRATION

By James H. Foster

University of Colorado

Let $\{p_j\}$ and $\{a_j\}$ be probabilities defined on the non-negative integers. Consider a Markov chain $\{Z_n; n=0,1,\cdots\}$ defined on the non-negative integers, with stationary transition probabilities given by

(1)
$$p_{ij} = P(Z_{n+1} = j \mid Z_n = i) = p_j^{(i^*)}, \qquad i \ge 1$$

$$=a_i,$$
 $i=0$

where $p_j^{(i*)}$ is the jth term in the ith fold convolution of the sequence $\{p_j\}$. $\{Z_n\}$ represents the sizes of successive generations in a Galton-Watson process, modified to allow an immigration of particles whenever the zero state is reached. After entering the system in accordance with the probabilities $\{a_j\}$, immigrating particles reproduce with offspring law $\{p_j\}$, independently of each other and of particles already present. Z_0 is considered to be positive and non-random.

The case in which the offspring distribution has mean one and finite variance is of particular interest because the limit behavior of $\{Z_n\}$ is unlike that usually observed in branching processes (with or without immigration), in that a non-linear normalization is required in order to get a proper non-zero limit distribution. If the offspring mean is greater than or less than one, the appropriate normalization for Z_n is the same as for the process in which the immigration is not state dependent (Pakes, Theorems 3 and 10).

From now on it will be assumed that:

- 1. $\sum j p_j = 1;$
- $2. \qquad \sum j^2 p_j < \infty;$
- 3. $\sum ja_j \equiv a < \infty$;
- 4. $p_j < 1$ for all j;
- 5. $a_0 < 1$.

The last two assumptions are made to avoid trivial cases. An example will be given to show that Z_n can have an entirely different kind of limit behavior if a is allowed to be infinite.

Set $f(s) = \sum p_j s^j$, $h(s) = \sum a_j s^j$, $|s| \le 1$, and let $f_n(s)$ denote the *n*th functional iterate of f(s) (i.e., $f_0(s) = s$ and $f_{n+1}(s) = f(f_n(s))$ for $n \ge 0$). A simple computation

Received February 3, 1970; revised March 11, 1971.