GENERALIZATIONS OF THE GLIVENKO-CANTELLI THEOREM

By J. Dehardt

California State College at Los Angeles

0. Introduction. Let μ be a probability measure on the Borel sets, \mathcal{B} , in k dimensional Euclidean space E_k and X_1, X_2, \cdots a sequence of independent random vectors with values in E_k such that $P[X_i \in A] = \mu(A)$ for every A in \mathcal{B} , $i = 1, 2, \cdots$. A necessary and sufficient condition is given for

(*)
$$\sup_{f \in \mathcal{M}} \left| n^{-1} \sum_{i=1}^{n} f(X_i) - \int f d\mu \right| \to_{a.s.} 0,$$

where \mathcal{M} is the class of all monotone functions on E_k with a uniform bound. (*) is shown to hold with no restriction on μ for several classes of functions, one of which is the class of characteristic functions of half-spaces in E_k . This result strengthens the theorem of Wolfowitz (1954). I am obliged to H. D. Brunk for many invaluable conversations.

1. Sufficient conditions on \mathcal{M} and μ for (*). Let \mathcal{M} denote a class of real-valued, measurable, uniformly bounded functions defined on E_k . For f in \mathcal{M} let

$$S_n(f) = n^{-1} \sum_{i=1}^n f(X_i).$$

If \mathcal{M} and μ are such that

$$P[\lim_{n\to\infty}\sup_{f\in\mathcal{M}}\left|S_n((f)-\int fd\mu\right|=0]=1,$$

it will be said that (*) holds. It will be assumed that \mathcal{M} is such that $\sup_{f \in \mathcal{N}} S_n(f)$ is measurable. The particular classes \mathcal{M} discussed in Section 2 have this property.

Lemmas 1-6 give sufficient conditions on \mathcal{M} and μ for (*), while the remainder of the results are concerned with (*) holding for particular classes \mathcal{M} .

Lemma 1. If corresponding to each positive number ε there is a finite class of functions $\mathcal{M}_{\varepsilon}$ such that for each f in \mathcal{M} there are f_1 and f_2 in $\mathcal{M}_{\varepsilon}$ with $f_1 \leq f \leq f_2$ and $\int f_2 d\mu - \int_1 f d\mu < \varepsilon$, then (*) holds.

PROOF. Corresponding to each positive integer k, let $\{f_1^k, f_2^k, \dots, f_m^k\}$ be the finite class $\mathcal{M}_{1/k}$ which corresponds to the positive number 1/k by the hypothesis. If

$$A_i^k = [S_n(f_i^k) \to [f_i^k] d\mu] \quad i = 1, 2, \dots, m; k = 1, 2, \dots,$$

then

$$P(A_i^k) = 1,$$

by the Law of Large Numbers. If $A = \bigcap_{k=1}^{\infty} \bigcap_{i=1}^{\infty} A_i^k$, then PA = 1.

Received September 3, 1970.

2050