A CONSISTENT ESTIMATION OF KERNEL FUNCTIONS IN THE MULTIPLE WIENER INTEGRALS

By Won Joon Park

Wright State University

- 1. Introduction. It is well known from the results of Itô [4] that any L^2 -functional F of Brownian motion with E[F] = 0 has an orthogonal representation, i.e., $F = \sum_{p=1}^{\infty} I_p(f_p)$ where $I_p(f_p)$ is the pth degree multiple Wiener integral. The estimation of the kernel function f_p $(p = 1, 2, \dots)$ is often required in solving various problems in nonlinear analysis and involves tremendous computations in the usual L^2 -norm approximation. As a direct application of a result of Isaccson [3], we give here a consistent estimator for the kernel function f_p of L^2 -functional of the form $F = \sum_{p=1}^{\infty} I_p(f_p)$.
- **2.** Notations and preliminaries. Let $\{X(t,\omega)\}_{t\in[0,T]}$ be standard Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . Let B_t (for $t\in[0,T]$) denote the σ -field generated by sets of the form

$$(2.1) E = \{\omega; [X(s_1, \omega), \cdots, X(s_n, \omega)] \in B^n\}$$

where $s_1, s_2, \dots, s_n \in [0, t]$ and B^n is an *n*-dimensional Borel set. Let \mathbf{B}_t denote the completion of B_t under P.

We shall write $L^2(\mathbf{B}_t)$ for $L^2(\Omega, \mathbf{B}_t, P)$, the Hilbert space of \mathbf{B}_t -measurable, real-valued functions square integrable with respect to P. We assume that $L^2(B_T)$ is separable. Let $L_t(X)$ denote the closed subspace of $L^2(\mathbf{B}_t)$ spanned by all finite linear combinations of the form $\sum_{i=1}^n c_i X(s_i, \omega)$ where the c_i 's are real constants, and $s_1, s_2, \dots, s_n \in [0, t]$.

We refer to Itô [4] for its definition and the various properties of the multiple Wiener integral;

$$(2.2) I_{p}(f_{p}; t) = \int_{0}^{t} \cdots \int_{0}^{t} f_{p}(s_{1}, s_{2}, \cdots, s_{p}) dX(s_{1}) dX(s_{2}) \cdots dX(s_{p})$$

for $f_p \in L^2([0, T]^p)$, where $L^2([0, T]^p)$ is the Hilbert space of Lebesgue square integrable functions on $[0, T]^p$. Denote $I_p(f_p) = I_p(f_p; T)$. The following results are due to Itô [4]. Any $F \in L^2(\mathbf{B}_T)$ can be expressed in the form:

$$(2.3) F = \sum_{p=1}^{\infty} I_p(f_p) = \sum_{p=1}^{\infty} I_p(\tilde{f}_p), furthermore if$$

(2.4)
$$\sum_{p=1}^{\infty}I_p(f_p)=F=\sum_{p=1}^{\infty}I_p(g_p)\;,$$
 then
$$\widetilde{f_p}=\widetilde{g}_p\;,$$

where $\tilde{f}_p(s_1, \dots, s_p) = 1/(p!) \sum_{(\pi)} f_p(s_{\pi_1}, \dots, s_{\pi_p}), (\pi) = (\pi_1, \dots, \pi_p)$ running over all permutation of $(1, 2, \dots, p)$.

When a sequence of random variables Y_n converges to a random variable Y in probability, we shall write $P \lim_{n\to\infty} Y_n = Y$.

Received May 7, 1970.