ON BAHADUR EFFICIENCY OF THE JOINT-RANKING PROCEDURE¹

By K. L. MEHRA

The University of Alberta

1. Introduction. Consider the problem of testing the equality of several, say K, treatments on the basis of paired-observations, viz. (X_{il}, X_{jl}) , $l = 1, 2, \cdots$, N_{ij} $(1 \le i < j \le K)$ obtained by N_{ij} independent paired-comparisons for each pair (i,j) of treatments. If we assume that the N_{ij} differences $Z_l^{(i,j)} = X_{il} - X_{jl}$, $l = 1, 2, \dots, N_{ij}$ have a common continuous cdf $G_{ij}(z)$ $(1 \le i < j \le K)$, the hypothesis of no-difference among the treatments can be formally expressed as

$$H_0$$
: $G_{ij}(z)+G_{ij}(-z)=1$ and $G_{ij}(z)=G_{i'j'}(z)$ for any two pairs (i,j) and (i',j') .

In [7] Mehra and in [8] Mehra and Puri had proposed and investigated a family of rank-order tests for the above problem based on a generalization of the Wilcoxon-one-sample ranking procedure: Let $R_{N,l}^{(i,j)}$ denote the rank of $|Z_l^{(i,j)}|$ when the $N=\sum_{i=1}^{K-1}\sum_{j>i}N_{ij}$ absolute values of the observed differences $Z_l^{(i,j)}$, $l=1,2,\cdots,N_{ij},\ (1\leq i< j\leq K)$ are arranged in ascending order of magnitude in a combined ranking. For a given set of rank-scores $\xi_{N,\alpha}, \alpha=1,2,\cdots,N$, define a step function $\xi_N(u)$ over (0,1), with $\xi_N(u)=\xi_{N,\alpha}=\xi_N(\alpha/(N+1))$ for $(a-1)/N< u\leq \alpha/N, \alpha=1,2,\cdots,N$ and set

$$(1.1) V_N^{(i,j)} = \sum_{l=1}^{Nij} \xi_N(R_{N,l}^{(i,j)}/(N+1)) \operatorname{sign} Z_l^{(i,j)}.$$

Assume further the existence of a function $\xi(u)$, 0 < u < 1, such that

and

(1.3)
$$\lim_{N\to\infty} \int_0^1 \{\xi_N(u) - \xi(u)\}^2 du = 0.$$

For testing the hypothesis H_0 , rank-order statistics of the form

(1.4)
$$L_N = L_N(\xi_N, \xi) = \sum_{i=1}^K \{ \sum_{j \neq i} (V_N^{(i,j)} / (N_{ij})^{\frac{1}{2}}) \}^2 / (\frac{1}{N} \sum_{\alpha=1}^N \xi_{N,\alpha}^2) K$$

(with the test consisting in rejecting H_0 when L_N is too large) were considered in [8]. It was shown that if the hypothesis H_0 were true and the conditions (1.2) and (1.3) were satisfied, L_N is distributed in the limit, as $N \to \infty$, as a χ^2 -variable with (K-1) df provided $\lim_{N\to\infty} (N_{ij}/N) = \eta_{ij} > 0$ for all (i,j), and that against shift alternatives its asymptotic Pitman-efficiency relative to the normal theory

1155

www.jstor.org

Received February 4, 1970; revised December 1971.

 $^{^{\}rm 1}$ Prepared with the partial support of the National Research Council of Canada Grant No. A-3061.