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We thank the editors for this opportunity and the dis-
cussants Kennedy, Balakrishnan and Wasserman (2020)
(abbreviated as KBW in the sequel) for their insightful
commentaries on our paper (Liu, Mukherjee and Robins,
2020) (abbreviated as LMR in the sequel).

1. A BRIEF INTRODUCTION TO HIGHER ORDER
INFLUENCE FUNCTIONS

We would like to start our rejoinder by responding
to the philosophical comments in Section 6 of KBW’s
discussion before getting into the other more technical
comments. In Section 6, KBW divide statistical proce-
dures into structure-driven and methods-driven but also
acknowledge that the boundary between these two cate-
gories is blurry. For example, even for the poster child of
the methods-driven tools – deep neural networks – one
common research direction is to prove some form of opti-
mality or robustness under some assumptions, often quan-
tified by smoothness, sparsity or other related complexity
measures such as metric entropy (Schmidt-Hieber, 2020,
Hayakawa and Suzuki, 2020, Barron and Klusowski,
2018).

The discussants then state that higher order influence
function (HOIF) based methods are ‘structure-driven’ be-
cause ‘they typically rely on carefully constructed series
estimates’ and achieve ‘better performance over appropri-
ate Hölder spaces potentially at the expense of being more
structure driven.’ This statement misunderstands the mo-
tivation and goals of HOIF estimation. Our goal has al-
ways been to make HOIF fully methods-driven. However,
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before we reach this goal, difficult open problems remain
to be solved. Until then, we have had to make restrictive
assumptions to obtain sharp mathematical results – these
assumptions can make our methodology appear at least
partly ‘structure-driven’.

The theory of HOIF is (simplifying somewhat) a theory
based only on higher order scores of finite dimensional
submodels. As a consequence, the theory by itself cannot
quantify the rates of convergence of a HOIF estimator and
thus the bias of a HOIF estimator without additional com-
plexity reducing model assumptions, a central point we
stressed throughout LMR. To be more concrete, for now
let us restrict the attention to smooth nonlinear functionals
ψ(θ) of a distribution Pθ lying in an infinite dimensional
model M = {Pθ ; θ ∈ �} with a first order influence func-
tion IF1,ψ(θ) but (as is generally the case in infinite di-
mensional models) without mth order influence functions
for m > 1. Therefore, HOIF theory often considers finite
k = k(n)-dimensional sieves Msub,k = {Pθ ; θ ∈ �sub,k ⊂
�} containing an initial training sample estimator θ̂ , an
associated projection map θ �→ θ̃k from � onto �sub,k

that is the identity for θ ∈ �sub,k . The projection map
defines a truncated parameter ψ̃k(θ), θ ∈ � by ψ̃k(θ) =
ψ(θ̃k(θ)), θ ∈ �, which will typically have HOIFs of all
orders because �sub,k is finite dimensional. The theory
of HOIF applied to the parameter ψ̃k(θ) guarantees that
{ψ̃k(θ̂ ) + Eθ [IFm,ψ̃k

(θ̂ )]} − ψ̃k(θ) = O(‖θ̂ − θ‖m+1) or,
equivalently,

Eθ

[
ψ̂m,k − ψ̃k(θ)

] ≡ EBθ,m,k(ψ̂1) = O
(‖θ̂ − θ‖m+1)

where ψ̂m,k = ψ(θ̂) + IFm,ψ̃k
(θ̂ ).

Here ψ̂1 = ψ(θ̂) + IF1,ψ̃k
(θ̂ ) is a doubly robust ma-

chine learning (DRML) estimator based on the first
order influence function and IFm,ψ̃k

(θ̂ ) = IF1,ψ̃k
(θ̂ ) −∑m

j=2 IFjj,ψ̃k
(θ̂ ) where, under P

θ̂
, IFjj,ψ̃k

(θ̂ ) ≡ ÎFjj,k

is a j th order U -statistic.1 Unless stated otherwise all
expectations are conditional on the training sample.

1Here we are using the same sign convention as in LMR, which
reverses the sign conventions of Robins et al. (2008).
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