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1. OUTLINE

We thank the discussants for their insightful and gen-
erous comments. We organized our reply around a few
themes, rather than responding to issues one by one. In
Section 2, we recap the major elements of the paper in
light of the discussion. Then Section 3 reviews the sev-
eral goals of matching. Finally, Section 4 discusses open
questions.

2. RECAP

First, let us restate the main themes of the paper.

• Network optimization. In our paper, each matched sam-
ple is obtained by optimizing a criterion subject to con-
straints. Specifically, each match is obtained as a min-
imum cost flow in a network, a rich but special fam-
ily of integer programs that can be solved in polyno-
mial time; see Bertsekas (1998) and Korte and Vygen
(2012). There are other approaches to matching that
leave the world of polynomial-time optimization algo-
rithms, and these have both advantages and disadvan-
tages (Zubizarreta, 2012; Karmakar, Small and Rosen-
baum, 2019), but they are not discussed in our paper.

• The constraints do most of the covariate balancing.
It is not possible to closely pair individuals for many
covariates. It is possible to form treated and control
groups with similar distributions of many covariates;
that is, it is possible to balance many low-dimensional
summaries of high-dimensional covariates. Balancing
of covariates is largely achieved by the constraints, not
by minimizing the within pair covariate distance. The
balancing constraints include: (i) calipers on the rank
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of the scalar propensity score, (ii) near-fine balance
constraints for a nominal covariate, perhaps with thou-
sands of levels, (iii) possibly other balance constraints
(Zubizarreta, 2012; Yu and Rosenbaum, 2019). If the
constraints do most of the work, then finding the con-
straints that achieve your objectives is a central aspect
of matching. In contrast, covariate distances used for
pairing should focus on a few key covariates highly pre-
dictive of the outcome (Rosenbaum, 2005; Zubizarreta,
Paredes and Rosenbaum, 2014).

• Optimization is not recommendation. As our example
illustrates, the standard practice is to build several opti-
mal matched samples, then pick the best one. There is
no contradiction here: an optimal match is the solution
to an optimization problem, not a recommended match.
The practical goal is a match that is good in several
senses, not best in one overriding sense, so each opti-
mal solution is merely an approximation to the prac-
tical goal. Optimization is an aid to judgement, not a
substitute for judgement. It is possible to produce the
set of Pareto optima for a multi-objective optimization
problem as a potentially useful guide (Pimentel and
Kelz, 2020; Rosenbaum, 2012), but ultimately the in-
vestigators must pick one match, so the basic structure
is unchanged: practical judgement is used to pick the
most satisfactory of several optimally matched sam-
ples. Several optimal solutions provide points on a map
by which judgement can steer among multiple objec-
tives. Matching is part of the design of the study, com-
pleted prior to the examination of outcomes (Rubin,
2007).

• Guarantee feasibility; guarantee speed. There is no
point in trying to solve an optimization problem sub-
ject to constraints if no solution satisfies the constraints.
A fast implementation of Glover’s (1967) algorithm
permits certain types of constraints to be checked for
feasibility at negligible cost. These include combina-
tions of: (i) exact match constraints for a nominal co-
variate, perhaps with many levels, (ii) a caliper on the
rank of the propensity score, (iii) a near-neighbor count
on the propensity score. A threshold algorithm—a bi-
nary search—rapidly finds the tightest feasible con-
straint with negligible error, thereby guiding optimal
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