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1. INTRODUCTION

I would like to congratulate the authors David Benkeser,
Weixin Cai and Mark van der Laan on their important
contributions and wonderfully written article. Like the au-
thors, I am interested in the development of high perform-
ing and theoretically principled estimation approaches
that are robust, interpretable and diagnosable in messy
real-world applications. Over the past 5–10 years, there
has been much progress made in adaptive semiparametric
estimation for causal and statistical parameters. The cur-
rent paper represents a notable contribution as it trades off
robustness for both stability and computational efficiency
in contexts where the parameter of interest is weakly iden-
tifiable. In this discussion, I provide my perspective on the
proposed estimator in the context of the current literature
with a goal of real-world usage.

2. ROBUSTNESS TRADEOFFS AND
EXTRAPOLATION

For what is often described as a “vanilla” targeted min-
imum loss-based estimator (TMLE) of the average treat-
ment effect [14], Chapter 4, the user must specify nui-
sance estimators for the outcome regression (OR) and the
propensity score (PS). The consistency of the point es-
timate is guaranteed if either nuisance estimator is con-
sistent. However, the convergence of the TMLE to a
mean-zero Gaussian variable relies on the nuisance es-
timators being Donsker and also the product of errors
of the two nuisance estimators converging to zero at a
n−1/2 rate (with respect to the L2(P0) norm). The usage
of cross-validated TMLE [15] relaxes the Donsker condi-
tion, which allows the analyst to choose from a wider se-
lection of machine learning methods. If both nuisance es-
timators are consistent, convergence speeds above n−1/4

will do and nonparametric estimators compatible with this
requirement are available [3]. However, if only one is con-
sistent then it must have parametric rates of convergence.
The general philosophy is that in ignorance of the exact
data-generating functions, nonparametric nuisance esti-
mators allow for consistency while parametric methods,
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with conventional but often unjustifiable restrictions on
the relationships between variables, will not. The authors
have previously proposed estimators with even stronger
robustness properties [2, 13] that converge to a normally
distributed random variable with known variance even un-
der the nonconvergence of one of the two nuisance esti-
mators. Note that the incorporation of slower-converging
nonparametric methods for the PS in inverse probability
of treatment weighting and for the OR in G-Computation
has no theoretical guarantees and may perform poorly.
Asymptotic linearity under nuisance estimators that con-
verge at slower-than-parametric-rates is one of the major
benefits of doubly robust approaches in general as it al-
lows for more flexible nuisance modeling.

Weak identifiability may arise when certain patient co-
variates are strongly related to the treatment taken. If these
covariates are not confounding, then they can be excluded
from the estimation procedure and a TMLE will behave
well. If they are confounders, then they must be adjusted
for in some way, typically in both the OR and PS mod-
els. Practical problems arise when the covariates in the PS
model allow for good discrimination between treatments.
Previous work has shown that types of collaborative-
TMLE (C-TMLE), that allow for either thresholding, the
precision of the treatment predictions [7] or limiting the
complexity of the PS model [1, 5, 8, 11] will outperform
TMLE in such settings. As in the current proposal, C-
TMLE was introduced as a way of stabilizing estimation
in weakly identifiable, finite sample settings.

I have noted three limitations of previous implementa-
tions of C-TMLE in my experience. These are:

1. Slow computational times as many C-TMLE algo-
rithms involve nested loops of model fitting and are thus
computationally expensive (with an exception in the work
by [6] though the authors noted some potential tradeoffs).
In longitudinal settings, computational time may increase
quickly in the number of time points (multiplicatively or
exponentially depending on restrictions) [12].

2. Extrapolation in finite samples where the OR model
is relied upon to model associations between the outcome
and confounders where there is little to no data support for
a given treatment. Extrapolation is essentially the goal of
C-TMLE and is both a blessing and a curse. In the extreme
case, C-TMLE can entirely avoid adjusting for confound-
ing in the PS model, so that the resulting estimate fully re-
lies on the model for the OR. This avoids the instability of
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