Errata for Perturbation by non-local operators

Zhen-Qing Chen ${ }^{\text {a }}$ and Jie-Ming Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Washington, Seattle, WA 98195, USA. E-mail: zqchen @uw.edu
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: wangjm@bit.edu.cn

Received 2 January 2020; accepted 2 January 2020

There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant C_{14} in [1, (3.22)] depends on $r^{1 / \alpha} \lambda$ rather than $\lambda>0$ and so when applying [1, Lemma 3.4] it gives a new A_{0} depending also on r. This gap affects only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates (3.20)-(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop λ and replace $M_{b, \lambda}$ defined in $[1,(1.13)]$ by $\|b\|_{\infty}$.

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)] hold for every $\lambda>0$. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for $\lambda=+\infty$ with (3.2), (3.11), (3.12), (3.19) and (3.23) being replaced by

$$
\begin{align*}
& \left|q^{b}\right|_{n}(t, x, y) \leq C_{11}\left(\|b\|_{\infty} C_{7} c\right)^{n} g_{1}(t, x, y), \quad t \in(0, T], x, y \in \mathbb{R}^{d} \tag{3.2'}\\
& \left|q_{n+1}^{b}(t, x, y)\right| \leq C_{13} 2^{-n}\|b\|_{\infty} p_{1}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d} \\
& \left|\mathcal{S}_{x}^{b} q_{n}^{b}(t, x, y)\right| \leq C_{12}\|b\|_{\infty} 2^{-n} f_{0}(t, x, y) \quad \text { for } t \in(0,1] \text { and } x, y \in \mathbb{R}^{d} \tag{3.12'}\\
& \left|q_{n}^{b}(t, x, y)\right| \leq C_{14} 2^{-n}\left(t^{-d / \alpha} \wedge\left(\frac{t}{|x-y|^{d+\alpha}}+\frac{\|b\|_{\infty} t}{|x-y|^{d+\beta}}\right)\right) \tag{3.19'}
\end{align*}
$$

and

$$
\begin{equation*}
\left|q^{b}(t, x, y)\right| \leq 2 C_{14}\left(t^{-d / \alpha} \wedge\left(\frac{t}{|x-y|^{d+\alpha}}+\frac{\|b\|_{\infty} t}{|x-y|^{d+\beta}}\right)\right), \tag{3.23'}
\end{equation*}
$$

respectively, where the constant c is the one in Lemma 0.1 and that the constant A_{0} in [1, Lemma 3.4] can be chosen to be smaller than $1 /\left(2 C_{12}\right)$. This gives the existence and uniqueness of the fundamental solution $q^{b}(t, x, y)$ and all the stated properties in [1, Theorem 1.1] except that we need to replace $p_{M_{b, \lambda}}$ by $p_{\|b\|_{\infty}}$ in the estimate [1, (1.16)].

For $a \geq 0$, denote by $p_{a}(t, x, y)$ the fundamental solution of $\Delta^{\alpha / 2}+a \Delta^{\beta / 2}$. Recall that for each $\lambda>0$ and $a \geq 0$, $f_{a, \lambda}(t, x, y)$ is defined as in $[1,(2.6)]$, and that $f_{a, \infty}(t, x, y)=f_{0}(t, x, y)$, which is given by $[1,(2.1)]$.

By a similar argument as [1, Lemma 2.5], one obtains the following inequality.
Lemma 0.1. There exists $c=c(d, \alpha, \beta)>0$ such that for all $t \in(0,1]$ and $x, y \in \mathbb{R}^{d}$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} p_{1}(t-s, x, z) f_{0}(s, z, y) d z d s \leq c p_{1}(t, x, y) .
$$

