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Comment: Variational Autoencoders as
Empirical Bayes
Yixin Wang, Andrew C. Miller and David M. Blei

We thank Professor Efron for his informative and
unifying review of empirical Bayes. In this comment,
we discuss the connection between empirical Bayes
and the variational autoencoder (VAE), a popular sta-
tistical inference framework in the machine learning
community. We hope this connection motivates new
algorithmic approaches for empirical Bayesians and
gives new perspectives on VAEs for machine learners.

EMPIRICAL BAYES AND VAES

The key idea of empirical Bayes is to estimate a prior
distribution from data. Consider a model where each
observation is independently generated by a different,
unobserved random variable. The empirical Bayesian
first uses all observations to estimate a prior over the
latent variables; she then infers these variables using
the fitted prior. In this model, each latent variable is
associated with only one data point. Yet, through the
fitted prior, the empirical Bayesian profits by incorpo-
rating information from the entire data set into each
inference.

This view of empirical Bayes reminds us of the
variational autoencoder (VAE) (Kingma and Welling,
2013), an approach to approximate Bayesian inference
for a particular class of latent variable models. A VAE

refers to both the user-specified generative model and
a strategy for approximate posterior inference. Given
a dataset, a VAE simultaneously fits the forward model
(i.e., the generative model) that describes the data and
a function that approximates Bayesian inversion for the
generative model. This inversion maps a data point to
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the (approximate) posterior of its associated latent vari-
able and, crucially, it is constructed from the entire data
set. Below we show that a VAE approximates one form
of empirical Bayes inference: in Efron’s language, it
performs g-modeling with a particular parametric form
of g.

THE POSTERIOR INFERENCE PROBLEM

Consider a data set with n data points x = (x1, . . . ,

xn). Each data point xi is independently generated
from a function fβ of a latent variable zi , where β

parameterizes the function. With prior p0 on each zi ,
observation i is generated

zi
ind∼ p0(zi),(1)

xi | zi
ind∼ p

(
xi | fβ(zi)

)
.(2)

Assume the prior p0(·) and probability kernel p(·)
are known; for example, they may both be multivari-
ate Gaussian with identity covariance. The form of the
function fβ(·) is also known, for example, a neural net-
work, but its parameters β are unknown. This class of
generative distributions includes both linear and non-
linear factor models as special cases. The goal is to use
the data to estimate the parameters β and infer the pos-
terior of the latent variables z = (z1, . . . , zn).

The posterior is a quotient between a joint density
and a marginal density; the latter takes the form of an
integral,

p(z | x;β) =
n∏

i=1

p(zi | xi;β)

=
n∏

i=1

p0(zi)p(xi | fβ(zi))∫
p0(zi)p(xi | fβ(zi))dzi

.

When the function fβ(·) is complicated, such as a
neural network, the integral in the denominator is of-
ten computationally intractable. Hence the posterior
p(z | x;β) is also intractable.
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