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The author is very grateful to the discussants for sharing their viewpoints on the article. The
discussant contributions highlight the gaps in the theoretical understanding and outline many
possible directions for future research in this area. The rejoinder is structured according to
topics. We refer to [GMMM], [K], [KL] and [S] for the discussant contributions by Ghorbani
et al., Kutyniok, Kohler & Langer and Shamir, respectively.

1. Overparametrization and implicit regularization. One of the general claims about
deep learning is that, even for extreme overfitting, the method still generalizes well. There
are numerous experiments showing that running the training error to zero and, therefore, in-
terpolating all data points results in state-of-the-art generalization performance. The rationale
behind this is that among all solutions interpolating the data points, of which most result in
bad generalization behavior, stochastic gradient descent (SGD) picks a minimum norm inter-
polant. This is also known as implicit regularization. While this is well known for stochastic
gradient descent applied to linear regression, for deep networks some progress has been made
recently in finding the norm minimized by (S)GD; see [10, 23].

It is now reasonable to wonder whether the notion of network sparsity could be removed in
the article if implicit regularization would have been taken into account. [GMMM] write that
“Model complexity is not controlled by an explicit penalty or procedure, but by the dynamics
of stochastic gradient descent (SGD) itself.” [S] mentions implicit regularization to show that
statistical guarantees should involve specific learning methods.

We conjecture that for additive error models, such as the nonparametric regression model
considered in the article, implicit regularization in the overfitted regime is insufficient to
achieve even consistency. To support our conjecture, we provide the following two-step ar-
gument. In the first step we argue that for one-dimensional input and shallow networks with
fixed parameters in the first layer, SGD will converge to a variant of the natural cubic spline
interpolant. In the second step we show that this reconstruction leads to an inconsistent esti-
mator if additive noise is present.

A shallow ReLU network with one input and one output node can be written as x �→∑m
j=1 aj (bjx − cj )+. We now study an even more simplified setup where bj is always one.

For small δ > 0, (x − cj )+ ≈ ∫ cj+δ
cj (x −u)+ du/δ. This motivates to study smoothed shallow

ReLU networks of the form

x �→ fa(x) =
m∑

j=1

aj√
tj − tj−1

∫ tj

tj−1

(x − u)+ du

with parameter vector a = (a1, . . . , am) and fixed t0 < t1 < · · · < tm. For convenience, we
have rescaled the parameters aj so that the normalization factor becomes 1/

√
tj − tj−1. We

consider the overparametrized regime m ≥ n assuming that, for any i, there lies at least one
tj in the interval [X(i−1),X(i)) with X(i) the ith order statistic of the sample X1, . . . ,Xn

and X(0) = −∞. Under overparametrization this is a rather weak assumption and ensures
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