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First we would like to congratulate Professor Johannes Schmidt-Hieber for his excellent
paper, which shows the surprising result that deep neural networks can achieve good rates of
convergence even in case of nonsmooth activation functions.

In the following we divide our discussion into three parts:

1. The importance of compository assumptions.
2. The necessity of the sparsity of the networks.
3. The theoretical difference between ReLU and sigmoidal functions.

1. The importance of compository assumptions. In the sequel we use the following
definition of (p,C)-smoothness.

DEFINITION 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R

is called (p,C)-smooth if, for every α = (α1, . . . , αd) ∈ N
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for all x, z ∈R
d , where ‖ · ‖ denotes the Euclidean norm.

Remark that this assumption on the regression function is similar to the class Cβ
r (D,K)

of functions mentioned in Section 3 in the paper under discussion. It is well known that the
optimal rate of convergence for the estimation of a (p,C)-smooth regression function is

n
− 2p

2p+d .

In case d is relatively large compared to p, this rate suffers from the well-known curse of
dimensionality. The only way to circumvent this phenomenon is to impose additional as-
sumptions on the regression function. One way is to impose compository assumptions, which
were already used by Horowitz and Mammen (2007), where regression functions have been
studied which are of the form

m(x) = g
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for g,gl1, . . . , gl1,...,lr : R → R (p,C)-smooth functions and xl1,...,lr single components of
x ∈ R

d (not necessarily different for two different indices (l1, . . . , lr )). With the use of a
penalized least squares estimate for smoothing splines, they proved the rate n−2p/(2p+1).
Kohler and Krzyżak (2017) extended this function class in form of the so-called generalized
hierarchical interaction models introduced as follows:
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