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Comment on “Probabilistic Integration:
A Role in Statistical Computation?”
Michael L. Stein and Ying Hung

We commend the authors for their serious effort
to address some of the mathematical, conceptual and
practical issues that arise when using probabilistic
methods for evaluating integrals of deterministic func-
tions and assessing the uncertainties in these meth-
ods. Applying Gaussian process models to determin-
istic but difficult to compute functions is, as this paper
emphasizes, gaining increasing attention in the numer-
ical analysis literature, but it has been actively pursued
in the computer experiment literature since at least the
seminal paper Sacks et al. (1989). In computer ex-
periments, the interest is usually in interpolation or
optimization of some complex deterministic function,
rather than integration, but many of the issues raised
in this work are also pertinent when interpolating. We
would also point to Sacks and Ylvisaker (1970) as
an early work that considers theoretical design issues
when integrating Gaussian processes, although from
the standpoint of assuming the unknown function re-
ally is a Gaussian process model with a known covari-
ance structure.

The present paper takes the point of view, com-
mon in the approximation theory literature, that the un-
known function lies in some specified RKHS. It then
exploits the fact that this reproducing kernel can be
viewed as the covariance function for a Gaussian pro-
cess, making it possible to make Bayesian inferences
based on this model. The problem with this approach,
which has long been known but can still lead to confu-
sion, is that if f is a realization of a Gaussian process
with covariance function k, then its realizations are in-
sufficiently smooth to be elements of the RKHS. This
paper provides some theory and a number of exam-
ples showing that, despite this fundamental problem,
the Bayesian inferences we get from the Gaussian pro-
cess model may provide good point estimates and use-
ful uncertainty assessments for the integral of f over
some domain.
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The theory in this work focuses on posterior con-
traction to the true value of the integral. As the au-
thors make clear, this is a very different notion than
the posterior distribution providing accurate probabil-
ity statements. Indeed, the paper also notes that there is
no theory, asymptotic or otherwise, to support a claim
that the posterior probability statements coming from
Bayes theorem will have a valid probability interpreta-
tion when f is an element of the RKHS.

To clarify the issues, let us consider a simple ex-
ample. Suppose we wish to integrate a function f

on [0,1] for which it is known f (0) = f (1) = 0.
Brownian bridge on [0,1] provides a Gaussian pro-
cess model whose realizations satisfy this condition; its
mean is 0 and its covariance function on [0,1] × [0,1]
is k(x, y) = σ 2(min(x, y) − xy) for some σ > 0. For a
Gaussian process Z with this covariance function ob-
served at j/n for j = 0, . . . , n, the optimal predictor of∫ 1

0 Z(x)dx is the trapezoidal rule and its RMSE can be
shown to be σ/(

√
12n). Realizations of this Gaussian

process are nowhere differentiable with probability 1.
In contrast, the elements of the RKHS with this kernel,
which we can call H(k), are functions f that satisfy
f (0) = f (1) = 0 and are absolutely continuous with
an almost everywhere first derivative that is square in-
tegrable.

It is exceedingly implausible that a likelihood func-
tion or a solution of a deterministic differential equa-
tion of practical interest would be nowhere differen-
tiable, so one should use caution when interpreting
posterior probability statements based on this model.
Lack of differentiability in these types of functions,
when it occurs, tends to occur along lower-dimensional
manifolds. For example, for 0 < s < t < 1, suppose
f (x) equals 1 for s < x < t and is 0 otherwise. This
function shares some properties with Brownian bridge.
First,
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