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Richard J. Samworth and Bodhisattva Sen

1. INTRODUCTION

Shape-constrained inference usually refers to non-
parametric function estimation and uncertainty quan-
tification under qualitative shape restrictions such as
monotonicity, convexity, log-concavity and so on.
One of the earliest contributions to the field was
by Grenander (1956). Motivated by the theory of mor-
tality measurement, he studied the nonparametric max-
imum likelihood estimator of a decreasing density
function on the nonnegative half-line. A great attrac-
tion of this estimator is that, unlike other nonparametric
density estimators such as histograms or kernel density
estimators, there are no tuning parameters (e.g., band-
widths) to choose.

Over subsequent years, this idea has been extended
and developed in many different directions. On the ap-
plied side, there has been a gradual realisation that
nonparametric shape constraints are very natural to
impose in many situations. For instance, monotonic-
ity of a regression function arises in many contexts
such as genetics (Luss, Rosset and Shahar, 2012),
medicine (Schell and Singh, 1997) and dose-response
modelling (Lin et al., 2012). Shape-constrained proce-
dures are also commonly used in economics (Matzkin,
1991, Varian, 1984) and survival analysis, for instance
in the interval-censoring problem and hazard func-
tion estimation; see the recent book by Groeneboom
and Jongbloed (2014). Many other applications, and
further developments, including the computational
aspects of these shape-constrained estimators, are
nicely summarised in the books by Barlow et al.
(1972), Robertson, Wright and Dykstra (1988) and
Groeneboom and Wellner (1992).

On the theoretical side, it has been known since
the work of Prakasa Rao (1969) that the Grenander
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estimator exhibits nonstandard asymptotic behaviour
(more precisely, it converges at rate n−1/3, where n is
the sample size, at points at which the true decreas-
ing density is differentiable with negative derivative).
Moreover, Groeneboom (1985) obtained the limiting
distribution of the L1-distance between the Grenan-
der estimator and true density. The study of the like-
lihood ratio test for monotone functions was initiated
by Banerjee and Wellner (2001), while the adaptive
behaviour of monotonicity-constrained estimators was
highlighted by Birgé (1989) and Zhang (2002), using
finite-sample risk bounds.

However, since the turn of the millennium (and the
last decade in particular) the area of shape constraints
has witnessed substantially increased activity. On the
one hand, researchers started studying systematically
the behaviour of univariate shape-constrained proce-
dures beyond monotonicity, for instance in convexity-
constrained models (Groeneboom, Jongbloed and
Wellner, 2001) and log-concave density estimation
(Dümbgen and Rufibach, 2009, Balabdaoui, Rufibach
and Wellner, 2009). On the other hand, there has
been a realisation that shape-constrained methods have
much to offer in multi-dimensional problems (e.g.,
Cule, Samworth and Stewart, 2010, Seijo and Sen,
2011, Koenker and Mizera, 2010, Han et al., 2018,
Seregin and Wellner, 2010). The scope of the field
has been broadened by the emergence of new applica-
tions, including convex set estimation (Brunel, 2013,
Guntuboyina, 2012, Gardner, Kiderlen and Milanfar,
2006, Gardner, 2006), shape-constrained dimension
reduction (Chen and Samworth, 2016, Xu, Chen and
Lafferty, 2016, Groeneboom and Hendrickx, 2018)
and ranking and pairwise comparisons (Shah et al.,
2017). New theoretical tools have been developed that
have allowed us to make progress in understanding
how shape-constrained procedures behave (Dümbgen,
Samworth and Schuhmacher, 2011, Kim and Sam-
worth, 2016, Cai and Low, 2015, Guntuboyina and
Sen, 2013). Last but not least, increased computing
power together with algorithmic advances mean that
certain estimators have become computationally fea-
sible (Koenker and Mizera, 2014, Mazumder et al.,
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