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Prior Specification Is Engineering,
Not Mathematics
James G. Scott

In their thought-provoking paper, Drs. Simpson et al.
argue that “the current practice of prior specification
is not in a good shape.” I agree, and offer some rea-
sons why this is so, rooted in the culture and practice
of Bayesian statistics as it stands today.

The Bayesian collaborator on a scientific project is
often put in the position of asking, with all appropri-
ate tact, why a particular prior has been chosen and
whether something else might actually be a bit wiser.
The experience is, I imagine, like working at a tattoo
parlor: it widens your perspective about what kinds of
poor choices are even possible.

For the R package maintainer, this experience must
be magnified ten- or a hundred-fold. I suspect that Drs.
Simpson et al. never would have imagined some of
the things that people do with priors, until they un-
dertook the job of writing and supporting an R pack-
age that does Bayesian inference for a wide class of
models. I appreciate very much the authors’ effort here
to share their wisdom from the front lines of prior
specification, and to formulate some general princi-
ples arising from this hard-won practical experience.
I will organize my discussion of their article, which
is both thought-provoking and excellent, around two
broad questions that surround the practical art of prior
specification.

DOES THE AUTHORS’ PROPOSAL ADDRESS
THE PROBLEM?

There is tremendous value in the authors’ discussion
of criteria for good default priors. Here, they identify
many common mistakes, which to my eye have a com-
mon theme: choices that make the prior rather more
informative than you intended. In particular, my vo-
cabulary has been enriched by the concept of “forced
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overfitting,” in which a default prior has the unin-
tended consequence of rewarding a needlessly complex
model. This is most obvious in the case of a variance
component for random effects in a hierarchical model,
a prototypical kind of nuisance parameter.

However, while it does not diminish my appreciation
of the paper, I am not convinced about the “PC prior”
formalism itself. For multivariate parameters, in partic-
ular, I have not yet been convinced that this formalism,
or any other, is adequate to the task of answering the
questions of prior choice that I have confronted in my
recent scientific collaborations. More generally, I am
leery of transferring intuitions gleaned from the scalar
case to the high-dimensional case.

I will give a simple example. In Tansey et al. (2017),
we describe an application in which the goal is to esti-
mate the background radiation intensity across a wide
spatial area. The details are unimportant here, but the
essence is this: we have an undirected graph G = (V,E)

that describes spatial adjacencies among locations, and
a parameter {θ(s) : s ∈ V} at each node in the graph,
parametrizing the background radiation at that loca-
tion. To estimate θ , we used a prior that penalizes first-
differences across edges in the graph:

p(θ) ∝ ∏

(r,s)∈E
p

(
θ(r) − θ(s) | τ )

,

where τ is a precision parameter. If p(·) is a Gaus-
sian distribution, then this is a traditional Gaussian
Markov random field (specifically, an intrinsic CAR
prior). This fits in the class of random-effects mod-
els described in the authors’ Section 3.3, and we could
therefore have used equation (3.3) as a prior for τ in a
Gaussian CAR model.

But instead, we chose a Laplace prior for these
first differences. Why? For several reasons. First, the
Laplace prior leads to a nonlinear spatial smoother that
adapts to different degrees of smoothness in different
regions of the graph, which our situation called for.
The Gaussian CAR prior, on the other hand, leads to
linear shrinkage, which has important consequences
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