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Exploiting the Feller Coupling for the
Ewens Sampling Formula

Richard Arratia, A. D. Barbour and Simon Tavaré

We congratulate Harry Crane on a masterful survey,
showing the universal character of the Ewens sampling
formula.

There are two grand ways to get a simple handle
on the Ewens sampling formula; one is the Chinese
restaurant coupling, and the other is the Feller cou-
pling. Since Crane has discussed the Chinese Restau-
rant process, but not the Feller coupling, we will give a
brief survey of the latter.

The Ewens sampling formula, given in Crane’s (1),
has an interpretation in terms of the cycle type of a
random permutation of n objects. For 6 = 1, it is just
Cauchy’s formula, expressed in terms of the fraction of
permutations of n objects that have exactly m; cycles
of order i, 1 <i <n. For general 6, the power

9m1+m2+"‘+mn — QK

appearing in the formula, where K denotes the number
of cycles, biases the uniform random choice of a per-
mutation by weighting with the factor 6%, the remain-
ing factors involving 6 merely reflecting the new nor-
malization constant required to specify a probability
distribution. We use the notation (Ci(n),...,C,(n))
to denote a random object distributed according to the
Ewens sampling formula, suppressing the parameter
6 but making explicit the parameter n, so that, with
Crane’s notation (1),

P(Ci(n) =my,...,Cy(n) =my)
(1)

=p(my,...,my;0).
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The Feller coupling, motivated by the example in Feller
([6], page 815) is defined as follows. Take indepen-
dent Bernoulli random variables &;, i = 1,2,3,...,
with the simple odds ratios P(§ = 0)/P(&; =1) =
(i —1)/6. Thus, E& =P¢E =1)=60/0 +i — 1),
and P(¢§;, =0)=(G — 1)/(@ +i — 1). Say that an ¢-
spacing occurs in a sequence ai, d, ..., of zeros and
ones, starting at position i — £ and ending at position i,
if aj_¢aj—py1---ai—1a; = 10¢~11, a one followed by
¢ — 1 zeros followed by another one. Then if, for each
£ > 1, we define

C¢(n) := the number of £-spacings in

517525---’5}’2—1’5}1717050’---’

the joint distribution of C1(n), ..., C,(n) is the Ewens
sampling formula, as per Crane’s (1) and our (1). This
can be seen directly, for the case 6 = 1: consider a
random permutation of 1 to n, write the canonical
cycle notation one symbol at a time, and let &; indi-
cate the decision to complete a cycle, when there is
an i-way choice of which element to assign next. The
general case 6 > 0 follows by biasing, with respect
to 0K: since K =& + --- + &,, and the &,...,&,
are independent, biasing their joint distribution by
g&1+ -+ = g&1...95 preserves their independence
and Bernoulli distributions, while changing the odds
P =0)/P¢& =1) from (@i —1)/1to (i —1)/6.

Now, the wonderful thing that happens is that, with
Y, defined to be the number of ¢-spacings in the in-
finite sequence &1, &>, ..., it turns out that Yy, Yo, ...
are mutually independent, and that Y, is Poisson dis-
tributed, with EY, = 6/¢, as in formula (11) in Sec-
tion 3.8. This shows that the Ewens sampling formula
is closely related to the simpler independent process
Y1, Y, ..., Y,. Explicitly, let R, be the position of
the rightmost one in &1, &>, ...,&,_1, §,—noting that
always &1 = 1 so R, is well-defined—and let J, :=
(n+1) — R,,. We have

@ Cm) =Y+ 1, =0,

with contributions to strict inequality whenever, for
some 1 < ¢ < n, an £-spacing occurred in &1, &, ...
starting at i — £ and ending at i > n.

1<t<n,



