Exploiting the Feller Coupling for the Ewens Sampling Formula

Richard Arratia, A. D. Barbour and Simon Tavaré

We congratulate Harry Crane on a masterful survey, showing the universal character of the Ewens sampling formula.

There are two grand ways to get a simple handle on the Ewens sampling formula; one is the Chinese restaurant coupling, and the other is the Feller coupling. Since Crane has discussed the Chinese Restaurant process, but not the Feller coupling, we will give a brief survey of the latter.

The Ewens sampling formula, given in Crane's (1), has an interpretation in terms of the cycle type of a random permutation of n objects. For $\theta=1$, it is just Cauchy's formula, expressed in terms of the fraction of permutations of n objects that have exactly m_{i} cycles of order $i, 1 \leq i \leq n$. For general θ, the power

$$
\theta^{m_{1}+m_{2}+\cdots+m_{n}}=\theta^{K}
$$

appearing in the formula, where K denotes the number of cycles, biases the uniform random choice of a permutation by weighting with the factor θ^{K}, the remaining factors involving θ merely reflecting the new normalization constant required to specify a probability distribution. We use the notation $\left(C_{1}(n), \ldots, C_{n}(n)\right)$ to denote a random object distributed according to the Ewens sampling formula, suppressing the parameter θ but making explicit the parameter n, so that, with Crane's notation (1),

$$
\begin{align*}
& \mathbb{P}\left(C_{1}(n)=m_{1}, \ldots, C_{n}(n)=m_{n}\right) \\
& \quad=p\left(m_{1}, \ldots, m_{n} ; \theta\right) \tag{1}
\end{align*}
$$

[^0]The Feller coupling, motivated by the example in Feller ([6], page 815) is defined as follows. Take independent Bernoulli random variables $\xi_{i}, i=1,2,3, \ldots$, with the simple odds ratios $\mathbb{P}\left(\xi_{i}=0\right) / \mathbb{P}\left(\xi_{i}=1\right)=$ $(i-1) / \theta$. Thus, $\mathbb{E} \xi_{i}=\mathbb{P}\left(\xi_{i}=1\right)=\theta /(\theta+i-1)$, and $\mathbb{P}\left(\xi_{i}=0\right)=(i-1) /(\theta+i-1)$. Say that an ℓ spacing occurs in a sequence a_{1}, a_{2}, \ldots, of zeros and ones, starting at position $i-\ell$ and ending at position i, if $a_{i-\ell} a_{i-\ell+1} \cdots a_{i-1} a_{i}=10^{\ell-1} 1$, a one followed by $\ell-1$ zeros followed by another one. Then if, for each $\ell \geq 1$, we define

$$
\begin{aligned}
C_{\ell}(n):= & \text { the number of } \ell \text {-spacings in } \\
& \xi_{1}, \xi_{2}, \ldots, \xi_{n-1}, \xi_{n}, 1,0,0, \ldots,
\end{aligned}
$$

the joint distribution of $C_{1}(n), \ldots, C_{n}(n)$ is the Ewens sampling formula, as per Crane's (1) and our (1). This can be seen directly, for the case $\theta=1$: consider a random permutation of 1 to n, write the canonical cycle notation one symbol at a time, and let ξ_{i} indicate the decision to complete a cycle, when there is an i-way choice of which element to assign next. The general case $\theta>0$ follows by biasing, with respect to θ^{K} : since $K=\xi_{1}+\cdots+\xi_{n}$, and the ξ_{1}, \ldots, ξ_{n} are independent, biasing their joint distribution by $\theta^{\xi_{1}+\cdots+\xi_{n}}=\theta^{\xi_{1}} \cdots \theta^{\xi_{n}}$ preserves their independence and Bernoulli distributions, while changing the odds $\mathbb{P}\left(\xi_{i}=0\right) / \mathbb{P}\left(\xi_{i}=1\right)$ from $(i-1) / 1$ to $(i-1) / \theta$.

Now, the wonderful thing that happens is that, with Y_{ℓ} defined to be the number of ℓ-spacings in the infinite sequence ξ_{1}, ξ_{2}, \ldots, it turns out that Y_{1}, Y_{2}, \ldots are mutually independent, and that Y_{ℓ} is Poisson distributed, with $\mathbb{E} Y_{\ell}=\theta / \ell$, as in formula (11) in Section 3.8. This shows that the Ewens sampling formula is closely related to the simpler independent process $Y_{1}, Y_{2}, \ldots, Y_{n}$. Explicitly, let R_{n} be the position of the rightmost one in $\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}, \xi_{n}$-noting that always $\xi_{1}=1$ so R_{n} is well-defined-and let $J_{n}:=$ $(n+1)-R_{n}$. We have

$$
\begin{equation*}
C_{\ell}(n) \leq Y_{\ell}+1\left(J_{n}=\ell\right), \quad 1 \leq \ell \leq n \tag{2}
\end{equation*}
$$

with contributions to strict inequality whenever, for some $1 \leq \ell \leq n$, an ℓ-spacing occurred in ξ_{1}, ξ_{2}, \ldots starting at $i-\ell$ and ending at $i>n$.

[^0]: Richard Arratia is Professor, Department of Mathematics, University of Southern California, 3620 S. Vermont Ave, KAP 104, Los Angeles, California 90089-2532, USA (e-mail: rarratia@usc.edu). A. D. Barbour is Professor Emeritus, Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland (e-mail: a.d.barbour@math.uzh.ch). Simon Tavaré is Professor, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom (e-mail: st321@cam.ac.uk).

