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Rejoinder
Marc G. Genton and William Kleiber

We are grateful to the discussants for providing very
valuable and insightful comments. Next, we present
our views on some of the comments of the discussants
and provide further discussion.

We thank Bevilacqua, Hering and Porcu (hereafter,
BHP) for bringing attention to the fundamental prob-
lem of comparing multivariate models. Until now, al-
most all comparisons between models have been rel-
egated to empirical performance on specific datasets,
whether it be performance on cokriging or particu-
lar scoring rules. BHP introduce two theoretical ap-
proaches to comparing the flexibility of multivari-
ate frameworks: (A) assessing the size of allowable
co-located cross-correlation between processes, and
(B) a measure of difference in allowed spatial (cross)-
correlation at differing distances.

Regarding (A), BHP claim the bivariate Matérn is
less flexible than the LMC in that there are nontriv-
ial restrictions on the cross-correlation coefficient for
the bivariate Matérn that are not present for the LMC.
We emphasize, however, that the bivariate Matérn re-
strictions are a characterizing feature of the covariance
class—no LMC construction can allow for marginal
and cross exact Matérn behavior while allowing for
unrestricted choice of co-located cross-correlation.
Rather, it is a physical restriction on the covariance
class, not a flexibility restriction.

Most spatial modelers include a nugget effect in the
statistical model, Yi(s) = Zi(s) + εi(s), where Zi(s) is
endowed with a multivariate model, and εi(s) is a white
noise process that is uncorrelated with Zi(s). If εi(s) is
nontrivial with variance τ 2

i , then the restrictions on the
cross-correlation coefficient can be relaxed, the amount
depending on the magnitude of the nugget effect and
sample size. To see this, let p = 2 and write the co-
variance matrix for two unit variance processes at n

locations {Z1(s1), . . . ,Z1(sn),Z2(s1), . . . ,Z2(sn)}T as
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B � �, where � = {Cij (sk, s�)}2;n
i,j=1;k,�=1 and B =

(Bij )
2
i,j=1 consists of four n × n block matrices. For

simplicity, assume τ1 = τ2, so that B12 = B21 are ma-
trices populated by a constant ρ0 and B11 = B22 are
matrices of ones with diagonal 1 + τ 2. Note that the
case ρ0 = 1 results in B � � having the specified mul-
tivariate dependence; if ρ0 > 1, then the two processes
can have larger cross-correlation than allowed by the
specified model. The cases where ρ0 > 1 are valid
when B12 = B
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22 , where K is a contraction ma-

trix (i.e., a matrix whose singular values are bounded
by unity); this follows from Proposition 1 of Kleiber
and Genton (2013). This is one feasible way to relax
the restrictions that are suggested by BHP’s (A) crite-
rion. We view BHP’s (B) as an alternative interesting
route to comparing models, although it is still unclear
what improvements a modeler would expect to gain for
various magnitudes of the (B) criterion.

Cressie et al. focus on three main aspects: the impor-
tance of modeling the nugget effect (which yields addi-
tional potential difficulties in the multivariate context),
the pseudo cross-variogram and alternative approaches
to building multivariate structures.

We focused our efforts on reviewing multivari-
ate covariance functions, not multivariate modeling,
a byproduct of which is that we left little discussion
to the issue of modeling the nugget effect. For in-
stance, the underlying latent smooth process W of
Cressie et al. [(2015), equation (4)] still requires spec-
ification of the multivariate structure, regardless of
whether a nugget effect will or will not ultimately be
included. Nonetheless, these authors bring up an im-
portant point in that, especially for multivariate pro-
cesses, some variables may be measured by the same
instrument, in which case it may be expected that mea-
surement errors are correlated across variables at in-
dividual locations. Disentangling microscale variabil-
ity of the process from measurement error is indeed a
difficult prospect; Sang, Jun and Huang (2011) used
a full-scale approximation for multivariate processes
that explicitly breaks up large scale, small scale and
measurement error variability.
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