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Discussion of Big Bayes Stories
and BayesBag
Peter Bühlmann

1. INTRODUCTORY REMARKS

I congratulate all the authors for their insightful
papers with wide-ranging contributions. The articles
demonstrate the power and elegance of the Bayesian
inference paradigm. In particular, it allows to incor-
porate prior knowledge as well as hierarchical model
building in a convincing way. Regarding the latter, the
contribution by Raftery, Alkema and German is a very
fascinating piece, as it addresses a set of problems of
great public interest and presents predictions for the
world populations and other interesting quantities with
uncertainty regions. Their approach is based on a hier-
archical model, taking various characteristics into ac-
count (e.g., fertility projections). It would have been
very difficult to come up with a “better” solution which
would be as clear in terms of interpretation (in contrast
to a “black-box machine”) and which would provide
(model-based) uncertainties for the predictions into the
future.

2. UNCERTAINTY, STABILITY AND BAGGING
THE POSTERIOR

Many of the papers quantify in one or another form
various notions of uncertainties. In the Bayesian frame-
work, this is usually based on the posterior distribution.
An old “debate” is how much the results are sensitive
to the choice of the prior, and I believe that some rea-
sonable sensitivity analysis can lead to much insight.
The sensitivity with respect to “perturbed data” though
is not easily captured by the Bayesian framework.
In the context of prediction, Leo Breiman (Breiman,
1996a, 1996b) has pointed to issues of stability with
respect to perturbations of the data, Bousquet and Elis-
seeff (2002) provide some mathematical connections
to prediction performance while Meinshausen and
Bühlmann (2010) present some theory and method-
ology for controlling the frequentist error of expected
false positives.
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As an example, the (frequentist) Lasso (Tibshirani,
1996) is very unstable for estimating the unknown
parameters in a linear model, in particular, if the cor-
relation among the covariates is high (for two highly
correlated variables where at least one of them has
a substantially large regression coefficient, the Lasso
selects either one or the other in an unstable fash-
ion). Thus, the MAP for a Gaussian linear model with
a Double-Exponential prior for the regression coeffi-
cients is unstable. The posterior distribution is prob-
ably more stable but, presumably, it is still “rather”
sensitive with respect to perturbation of the data: if
the data would look a bit different, the posterior might
be “rather” different. The situation becomes more ex-
posed to stability problems when using spike and slab
priors (Mitchell and Beauchamp, 1988), due to in-
creased sparsity.

We can stabilize the posterior distribution by using a
bootstrap and aggregation scheme, in the spirit of bag-
ging (Breiman, 1996b). In a nutshell, denote by D∗ a
bootstrap- or subsample of the data D. The posterior
of the random parameters θ given the data D has c.d.f.
F(·|D), and we can stabilize this using

FBayesBag(·|D) = E
∗[

F
(·|D∗)]

,

where E
∗ is with respect to the bootstrap- or subsam-

pling scheme. We call it the BayesBag estimator. It can
be approximated by averaging over B posterior compu-
tations for bootstrap- or subsamples, which might be a
rather demanding task (although say B = 10 would al-
ready stabilize to a certain extent). Note that when con-
ditioning on the data, the posterior F(·|D) is a fixed
c.d.f., but when taking the view point that the data
could change, it is useful to consider randomized per-
turbed versions F(·|D∗) which are to be aggregated.

The following simple and rather stable example
shows that such a bagging scheme outputs a larger un-
certainty which is perhaps more appropriate.

LOCATION MODEL WITH CONJUGATE GAUSSIAN

PRIOR. Consider the model

θ ∼N
(
0, τ 2)

,

conditional on θ : X1, . . . ,Xn i.i.d. ∼ N
(
θ, σ 2)

.

91


