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Discussion of “Estimating the Distribution
of Dietary Consumption Patterns”
Stephen E. Fienberg and Rebecca C. Steorts

Carroll describes an innovative model developed in
Zhang et al. (2011) for estimating dietary consump-
tion patterns in children, and a successful Bayesian
solution for inferring the features of the model. The
original authors went to great lengths to achieve valid
frequentist inference via a Bayesian analysis that sim-
plified the computational complexities encountered in
standard frequentist approaches. Pragmatically, this
led to a reasonable set of estimates, but their com-
bination of Bayesian and frequentist tools and ideas
stopped short of what we consider a full and proper
Bayesian analysis. We ask two fundamental ques-
tions: How do we know that the model and estimation
are valid? What role should the survey weights have
played?

1. MODEL VALIDITY

The model of Zhang et al. (2011) is highly com-
plex—how, without something like sensitivity analy-
sis, are we to know that it is valid? As for inference,
the original authors rely on the well-known (Bernstein–
von Mises) asymptotic convergence of Bayesian pos-
terior means and maximum likelihood estimates to
develop standard errors using balanced repeated repli-
cation (BRR). We agree that their sample size is large
for many purposes, however, when the inverse Fisher
information is large, convergence can be slow. More-
over, this standard convergence result is known to
slow down as the number of parameters grows, fail-
ing completely for nonparametric models. Can we rely
on Bernstein–von Mises, at these sample sizes, for this
very complex (and only semi-parametric) model? This
is not clear to us.
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2. SURVEY WEIGHTS

In Section 3.3, Carroll (2014) notes that the use of
survey weights in Bayesian analyses is controversial,
and then he proceeds to use them as reported in by the
National Center of Health Statistics (NCHS) nonethe-
less to do a weighted analysis. Fienberg (2009) reminds
us that in the NCHS survey context, weights are not
just used to adjust for unequal selection probabilities,
but are the product of at least three factors:

wk = 1

πk

× (nonresponse adjustment)

× (post-stratification adjustment).

The first factor is the inverse of the probability of se-
lection, for example, taking into account stratification
and clustering. The second factor inflates the sample
results to adjust for nonresponse, typically by invok-
ing the assumption that the missing data are missing at
random, at least within chosen strata or post-strata. The
third factor re-weights the population totals to add up
to control totals coming from another source such as a
census.

Gelman (2007) rightly states: “Survey weighting is
a mess,” and this is especially so from a Bayesian
perspective. What weights if any should be used in a
Bayesian analysis? In a simple stratification setting,
and where we are estimating a mean or a total, weight-
ing using 1/πk has a Bayesian justification. For more
complex situations, such as the one Carroll describes,
the role of the survey weights is unclear. Bayesian
benchmarking is a way to deal with the third compo-
nent in the weight formula above, but Ghosh and Ste-
orts (2013) point out the tricky nature of the choice of
both loss function and benchmarking weights for small
area estimation of complex surveys. In essence, Carroll
and his collaborators appear to be creating a pseudo-
likelihood that adjusts individual contributions by the
weights and then they use a survey-weighted MCMC
calculation with uncertainty estimation coming from
balanced repeated replication. This seems unusually
strange to us, and decidedly non-Bayesian in charac-
ter.

95


