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1. INTRODUCTION

Traditional statistical inference considers relatively
small data sets and the corresponding theoretical anal-
ysis focuses on the asymptotic behavior of a statistical
estimator when the number of samples approaches in-
finity. However, many data sets encountered in modern
applications have dimensionality significantly larger
than the number of training data available, and for such
problems the classical statistical tools become inade-
quate. In order to analyze high-dimensional data, new
statistical methodology and the corresponding theory
have to be developed.

In the past decade, sparse modeling and the corre-
sponding use of sparse regularization methods have
emerged as a major technique to handle high-dimen-
sional data. While the data dimensionality is high, the
basic assumption in this approach is that the actual es-
timator is sparse in the sense that only a small number
of components are nonzero. On the practical side, the
sparsity phenomenon has been ubiquitously observed
in applications, including signal recovery, genomics,
computer vision, etc. On the theoretical side, this as-
sumption makes it possible to overcome the problem
associated with estimating more parameters than the
number of observations which is impossible to deal
with in the classical setting.

There are a number of challenges, including devel-
oping new theories for high-dimensional statistical es-
timation as well as new formulations and computa-
tional procedures. Related problems have received a
lot of attention in various research fields, including ap-
plied math, signal processing, machine learning, statis-
tics and optimization. Rapid advances have been made
in recent years. In view of the growing research activ-
ities and their practical importance, we have organized
this special issue of Statistical Science with the goal
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of providing overviews of several topics in modern
sparsity analysis and associated regularization meth-
ods. Our hope is that general readers will get a broad
idea of the field as well as current research directions.

2. SPARSE MODELING AND REGULARIZATION

One of the central problem in statistics is linear re-
gression, where we consider an n × p design matrix X

and an n-dimensional response vector Y ∈ R
n so that

Y = Xβ̄ + ε,(1)

where β̄ ∈ R
p is the true regression coefficient vector

and ε ∈ R
n is a noise vector. In the case of n < p,

this problem is ill-posed because the number of pa-
rameters is more than the number of observations.
This ill-posedness can be resolved by imposing a spar-
sity constraint: that is, by assuming that ‖β̄‖0 ≤ s

for some s, where the �0-norm of β̄ is defined as
‖β̄‖0 = |supp(β̄)|, and the support set of β̄ is defined
as supp(β̄) := {j : β̄j �= 0}. If s � n, then the effective
number of parameters in (1) is smaller than the number
of observations.

The sparsity assumption may be viewed as the clas-
sical model selection problem, where models are in-
dexed by the set of nonzero coefficients. The classi-
cal model selection criteria such as AIC, BIC or Cp
[1, 7, 11] naturally lead to the so-called �0 regulariza-
tion estimator:

β̂(�0) = arg min
β∈Rp

[
1

n
‖Xβ − Y‖2

2 + λ‖β‖0

]
.(2)

The main difference of modern �0 analysis in high-
dimensional statistics and the classical model selection
methods is that the choice of λ will be different, and
the modern analysis requires choosing a larger λ than
that considered in the classical model selection setting
because it is necessary to compensate for the effect
of considering many models in the high-dimensional
setting. The analysis for �0 regularization in the high-
dimensional setting (e.g., [15] in this issue) employs
different techniques and the results obtained are also
different from the classical literature.
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