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The choice for parametric techniques in the discus-
sion article is motivated by the claim that for multi-
variate extreme-value distributions, “owing to the curse
of dimensionality, nonparametric estimation has essen-
tially been confined to the bivariate case” (Section 2.3).
Thanks to recent developments, this is no longer true if
data take the form of multivariate maxima, as is the
case in the article. A wide range of nonparametric,
rank-based estimators and tests are nowadays available
for extreme-value copulas. Since max-stable processes
have extreme-value copulas, these methods are appli-
cable for inference on max-stable processes too. The
aim of this note is to make the link between extreme-
value copulas and max-stable processes explicit and to
review the existing nonparametric inference methods.

1. EXTREME-VALUE COPULAS

Let the random variables Y1, . . . , YD represent the
maxima in a given year of a spatial process (e.g.,
rainfall) that is observed at a finite number of sites,
x1, . . . , xD , in a region X in space R

p (typically,
p = 2). Let F1, . . . ,FD be the marginal cumulative dis-
tribution functions, assumed to be continuous. In the
article, these are assumed to be univariate generalized
extreme-value distributions, an assumption that will
not be needed here.

The random variables Ud = Fd(Yd) are uniformly
distributed on the interval (0,1) and the joint cumu-
lative distribution function C of the vector U1, . . . ,UD

is the copula of the random vector Y1, . . . , YD :

C(u1, . . . , uD) = Pr(U1 ≤ u1, . . . ,UD ≤ uD)(1)

for 0 ≤ ud ≤ 1. The requirement that the random vector
Y1, . . . , YD is max-stable entails

Cm(u
1/m
1 , . . . , u

1/m
D ) = C(u1, . . . , uD)(2)
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for all m > 0. In [18], it was shown that (2) holds if,
and only if,

C(u1, . . . , uD) = exp{−rA(v1, . . . , vD)},(3)

where r = −∑D
d=1 logud and vd = −r−1 logud . The

domain of the Pickands dependence function A is the
unit simplex, SD = {v ∈ [0,1]D :

∑
d vd = 1}. A neces-

sary and sufficient condition for a function A on SD to
be a Pickands dependence function is that

A(v1, . . . , vD)
(4)

=
∫

SD

max(v1s1, . . . , vDsD)dM(s1, . . . , sD)

for a Borel measure M on SD verifying the constraints∫
SD

sd dM(s1, . . . , sD) = 1 for all d ∈ {1, . . . ,D}. In
particular, A is convex and max(v1, . . . , vD) ≤ A(v1,

. . . , vD) ≤ v1 + · · · + vD . In dimension D = 2, these
two properties completely characterize Pickands de-
pendence functions (but not if D ≥ 3).

2. MAX-STABLE MODELS

The representation in (3)–(4) is valid for general
max-stable copulas and therefore also holds for the
finite-dimensional distributions of the max-stable pro-
cesses considered in Section 6 in the article. The pur-
pose of this section is to make this relation explicit.

Consider the simple max-stable process

Z(x) = max
j≥1

[Sj max{0,Wj (x)}], x ∈ R
p,(5)

where {Sj }∞j=1 are the points of a Poisson process

on R+ with rate s−2 ds and where W1,W2, . . . are
iid replicates of a stationary stochastic process W on
R

p , independent of the previous Poisson process, and
such that E[W+(x)] = 1, where we write W+(x) =
max{0,W(x)}. Particular cases of this model include
the so-called Smith model [24], the Schlather model
[22] and the Brown–Resnick model [12].

The stationary, marginal distribution of Z(x) in (5)
is unit-Fréchet and the joint distribution function of the
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