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We congratulate the authors for producing such a
helpful and comprehensive overview paper of a rapidly
developing and important area. The starting point for
inference in spatial extreme value problems is to iden-
tify which features of the process require modeling.
In certain applications, for example, in the generation
of return period maps, only the marginal behavior is
of concern. For such applications, the covariate hierar-
chical/latent variable models reviewed in Section 4 are
ideal. However, if there is any dependence in the pro-
cess between sites, then care needs to be taken when
assessing the uncertainty in the estimated marginal dis-
tribution; the composite likelihood procedures detailed
in Section 6.2 can also be exploited in this context
when one wishes to avoid assumptions on the form
of the spatial dependence. As the authors point out,
however, if interest lies in modeling the joint occur-
rence of extremes over a region, then the dependence
structure of the spatial process needs to be explicitly
modeled. The most widely used approach in such cases
is to model the process as a max-stable process. Here
we will explore the suitability of this framework for
modeling spatial extremes, since these processes are
quite restrictive in their assumptions. Specifically, all
finite dimensional distributions of a max-stable process
are multivariate extreme distributions. Even simply in
the bivariate case, this corresponds to the variables be-
ing exactly independent or asymptotically dependent.
Consequently, the broad class of asymptotically inde-
pendent variables is precluded under the modeling as-
sumptions of max-stable processes.

First consider diagnostic testing for the process be-
ing max-stable. From our experience we feel that in
many applications, max-stable processes are assumed
to be appropriate without testing their suitability for
the data. A partial justification for this is that often it is
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pointwise maxima that are being modeled, and so just
as one appeals to the marginal limit theory to justify
fitting the GEV distribution site-wise, it seems natural
to appeal to the limit theory for the dependence struc-
ture also. However, we would typically not fit the GEV
to the margins blindly, but look to assess its suitability
through diagnostics such as Q-Q plots. To our knowl-
edge, there currently are no diagnostics for testing if
the process is max-stable, and so this discussion con-
tribution aims to provide such a test.

Suppose that {Y(x) : x ∈ A} is a max-stable process
on the region A with standard Gumbel marginal dis-
tributions for all x. This is simply attained through a
pointwise log transformation of the more commonly-
assumed standard Fréchet margins. As the process
will typically only be observed at a finite set of sites
x1, . . . ,xm, then all that can be tested for in practice
is that the joint distribution of {Y(xj ) : j ∈ �}, where
� = {1, . . . ,m}, follows a multivariate extreme value
distribution. Then for any D ⊆ � we have that the joint
distribution function for {Y(xj ) : j ∈ D} is

GD(y) = exp[−VD{exp(y)}],
where VD is the associated exponent measure; see Sec-
tion 2.3. A key property of GD , due to max-stability, is
that the distribution of YD = maxj∈D Y(xj ) is

HD(y) = GD(y1) = exp[− exp{−(y − μD)}].
This is a Gumbel distribution with location parame-
ter μD = logVD(1) where 0 ≤ μD ≤ log(|D|), due
to bounds on the exponent measure. It follows that
ZD = YD −μD is standard Gumbel for all D ⊆ �. The
idea of the diagnostic is to pool values of ZD over repli-
cates of the max-stable process and over all D ⊆ �, of
a particular cardinality k = |D|, and test using a P-P
plot whether the variables ZD follow a standard Gum-
bel distribution. This enables an assessment of the kth
dimensional properties of the process. Here we look at
k = 2,3,4,m.

There are a few practical issues to address. As the
value of μD is unknown for all D with |D| ≥ 2, these
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