CORRECTION ON MOMENTS OF MINORS OF WISHART MATRICES

Ann. Statist. 36 (2008) 2261-2283

By Mathias Drton and Aldo Goia
 University of Chicago and University of East Piedmont

Theorem 5.7 in [1] gives a formula for the variance of a minor (i.e., a subdeterminant) of a Wishart random matrix. The formula has to be corrected as follows.

THEOREM 5.7. Let $I, J \in\left\{\begin{array}{c}r \\ m\end{array}\right\}$ have intersection $C:=I \cap J$ of cardinality $c=|C|=|I \cap J|$. Define $\bar{I}=I \backslash(I \cap J), \bar{J}=J \backslash(I \cap J)$ and $\bar{I} \bar{J}=\bar{I} \cup \bar{J}$. Then the minor $\operatorname{det}\left(S_{I \times J}\right)=\operatorname{det}\left(S_{I J}\right)$ of the Wishart matrix $S \sim \mathcal{W}_{r}(n, \Sigma)$ has variance

$$
\begin{aligned}
& \operatorname{Var}\left[\operatorname{det}\left(S_{I J}\right)\right] \\
&= \operatorname{det}\left(\Sigma_{I J}\right)^{2} \frac{n!}{(n-m)!}\left[\frac{(n+2)!}{(n+2-m)!}-\frac{n!}{(n-m)!}\right] \\
&+\operatorname{det}\left(\Sigma_{C \times C}\right)^{2} \operatorname{det}\left(\bar{\Sigma}_{\bar{I} \bar{J} \times \bar{I} \bar{J}}\right) \frac{(n+2)!}{(n+2-c)!} \cdot \frac{n!}{(n-m)!} \\
& \quad \times\left[\sum_{k=0}^{m-c-1}(m-c-k)!\frac{(n+2-c)!}{(n+2-c-k)!}(-1)^{k} \operatorname{tr}\left\{\left(\bar{\Sigma}_{\bar{I} \bar{J}} \bar{\Sigma}^{\bar{I} \bar{J}}\right)^{(k)}\right\}\right]
\end{aligned}
$$

where $\bar{\Sigma}=\Sigma_{([r] \backslash C) \times([r] \backslash C)}-\Sigma_{([r] \backslash C) \times C} \Sigma_{C \times C}^{-1} \Sigma_{C \times([r] \backslash C)}$.
Proof. Define \bar{S} in analogy to $\bar{\Sigma}$. Since $\operatorname{det}\left(S_{I J}\right)=\operatorname{det}\left(S_{C \times C}\right) \operatorname{det}\left(\bar{S}_{\bar{I} \times \bar{J}}\right)$, and $S_{C \times C}$ and $\bar{S}_{\bar{I} \times \bar{J}}$ are independent (Lemma 5.2),

$$
\begin{aligned}
\operatorname{Var}\left[\operatorname{det}\left(S_{I J}\right)\right]= & \left(\operatorname{Var}\left[\operatorname{det}\left(S_{C C}\right)\right]+\mathrm{E}\left[\operatorname{det}\left(S_{C C}\right)\right]^{2}\right) \operatorname{Var}\left[\operatorname{det}\left(\bar{S}_{\bar{I} \bar{J}}\right)\right] \\
& +\operatorname{Var}\left[\operatorname{det}\left(S_{C C}\right)\right] \mathrm{E}\left[\operatorname{det}\left(\bar{S}_{\bar{I} \bar{J}}\right)\right]^{2}
\end{aligned}
$$

The claim now follows from Corollary 4.2 and Propositions 5.1 and 5.5.

[^0]
[^0]: Received March 2012.
 MSC2010 subject classifications. 60E05, 62 H 10 .
 Key words and phrases. Compound matrix, graphical models, multivariate analysis, random determinant, random matrix, tetrad.

