CORRECTION ON

MOMENTS OF MINORS OF WISHART MATRICES

Ann. Statist. 36 (2008) 2261-2283

BY MATHIAS DRTON AND ALDO GOIA

University of Chicago and University of East Piedmont

Theorem 5.7 in [1] gives a formula for the variance of a minor (i.e., a subdeterminant) of a Wishart random matrix. The formula has to be corrected as follows.

THEOREM 5.7. Let $I, J \in {r \choose m}$ have intersection $C := I \cap J$ of cardinality $c = |C| = |I \cap J|$. Define $\overline{I} = I \setminus (I \cap J)$, $\overline{J} = J \setminus (I \cap J)$ and $\overline{I} \overline{J} = \overline{I} \cup \overline{J}$. Then the minor $\det(S_{I \times J}) = \det(S_{IJ})$ of the Wishart matrix $S \sim W_r(n, \Sigma)$ has variance

 $Var[det(S_{IJ})]$

$$= \det(\Sigma_{IJ})^{2} \frac{n!}{(n-m)!} \left[\frac{(n+2)!}{(n+2-m)!} - \frac{n!}{(n-m)!} \right]$$

$$+ \det(\Sigma_{C \times C})^{2} \det(\bar{\Sigma}_{\bar{I}\bar{J} \times \bar{I}\bar{J}}) \frac{(n+2)!}{(n+2-c)!} \cdot \frac{n!}{(n-m)!}$$

$$\times \left[\sum_{k=0}^{m-c-1} (m-c-k)! \frac{(n+2-c)!}{(n+2-c-k)!} (-1)^{k} \operatorname{tr} \left\{ (\bar{\Sigma}_{\bar{I}\bar{J}} \bar{\Sigma}^{\bar{I}\bar{J}})^{(k)} \right\} \right],$$

where
$$\bar{\Sigma} = \Sigma_{([r] \setminus C) \times ([r] \setminus C)} - \Sigma_{([r] \setminus C) \times C} \Sigma_{C \times C}^{-1} \Sigma_{C \times ([r] \setminus C)}$$
.

PROOF. Define \bar{S} in analogy to $\bar{\Sigma}$. Since $\det(S_{IJ}) = \det(S_{C \times C}) \det(\bar{S}_{\bar{I} \times \bar{J}})$, and $S_{C \times C}$ and $\bar{S}_{\bar{I} \times \bar{J}}$ are independent (Lemma 5.2),

$$\operatorname{Var}[\det(S_{IJ})] = \left(\operatorname{Var}[\det(S_{CC})] + \operatorname{E}[\det(S_{CC})]^{2}\right)\operatorname{Var}[\det(\bar{S}_{\bar{I}\bar{J}})]$$
$$+ \operatorname{Var}[\det(S_{CC})]\operatorname{E}[\det(\bar{S}_{\bar{I}\bar{J}})]^{2}.$$

The claim now follows from Corollary 4.2 and Propositions 5.1 and 5.5. \Box

Received March 2012.

MSC2010 subject classifications. 60E05, 62H10.

Key words and phrases. Compound matrix, graphical models, multivariate analysis, random determinant, random matrix, tetrad.