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Recently there has been an increasing interest in the problem of estimating a
high-dimensional matrix K that can be decomposed in a sum of a sparse matrix S∗
(i.e., a matrix having only a small number of nonzero entries) and a low rank ma-
trix L∗. This is motivated by applications in computer vision, video segmentation,
computational biology, semantic indexing, etc. The main contribution and novelty
of the Chandrasekaran, Parrilo and Willsky paper (CPW in what follows) is to
propose and study a method of inference about such decomposable matrices for
a particular setting where K is the precision (concentration) matrix of a partially
observed sparse Gaussian graphical model (GGM). In this case, K is the inverse
of the covariance matrix of a Gaussian vector XO extracted from a larger Gaussian
vector (XO,XH) with sparse inverse covariance matrix. Then it is easy to see that
K can be represented as a sum of a sparse precision matrix S∗ corresponding to
the observed variables XO and a matrix L∗ with rank at most h, where h is the
dimension of the latent variables XH . If h is small, which is a typical situation in
practice, then L∗ has low rank. The GGM with latent variables is of major interest
for applications in biology or in social networks where one often does not observe
all the variables relevant for depicting sparsely the conditional dependencies. Note
that formally this is just one possible motivation and mathematically the problem
is dealt with in more generality, namely, postulating that the precision matrix sat-
isfies

K = S∗ + L∗(1)

with sparse S∗ and low-rank L∗, both symmetric matrices. A small amendment to
that inherited from the latent variables motivation is that L∗ is assumed negative
definite (in our notation, L∗ corresponds to −L∗ in the paper). We believe that this
is not crucial and all the results remain valid without this assumption.

CPW propose to estimate the pair (S∗,L∗) from a n-sample of XO by the pair
(Ŝ, L̂) obtained by minimizing the negative log-likelihood with mixed �1 and nu-
clear norm penalties; cf. (1.2) of the paper. The key issue in this context is identifia-
bility. Under what conditions can we identify S∗ and L∗ separately? CPW provide
geometric conditions of identifiability based on transversality of tangent spaces to
the varieties of sparse and low-rank matrices. They show that, under these condi-
tions, with probability close to 1, it is possible to recover the support of S∗, the rank
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