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Discussion of “Multiple Testing for
Exploratory Research” by J. J. Goeman
and A. Solari
Nicolai Meinshausen

I want to congratulate the authors on this thought-
provoking and important paper on multiple testing in
exploratory settings.

Standard Multiple Testing procedures can appear
very mechanistic. Hypotheses are ordered by increas-
ing p-value. Given a Type I error criterion, the Multiple
Testing procedure selects a cut-off in this list. Simply
working down the list of hypotheses in order of their
p-values is perhaps suboptimal for exploratory analy-
sis as a lot of information is lost in this way and im-
portant discoveries might be missed. Some previous
work has addressed this issue by changing the ranking
of the hypotheses. To highlight only three examples:
Tibshirani and Wasserman (2006) devised a method to
borrow strength across highly correlated test statistics
in microarray experiments. Storey (2007) proposed an
“optimal discovery” procedure that again leads to a dif-
ferent ranking of variables than the ranking implied by
the marginal p-values. One of the authors also pro-
posed a very powerful way of incorporating known net-
work structure into the testing procedure [Goeman and
Mansmann, 2008].

The proposed approach to exploratory multiple test-
ing is more radical, though, than changing the cut-off
or changing the ranking of hypotheses. Instead of the
perhaps rather dull task of selecting a cut-off in a list
of ordered hypotheses, the researcher can reject for
follow-up analysis any set of hypotheses he or she re-
gards as interesting, using all the information at hand.
The method then returns a lower bound on the number
of false null hypotheses (true discoveries) in this set.
Since the bound is valid simultaneously across all sets,
an exploratory approach does not invalidate the error
bound.

I think this method will be very important and useful
in many fields as it allows a flexible exploration of pos-
sibly interesting sets of hypotheses, while at the same
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time protecting the practitioner against too many false
rejections (or at least managing expectations about the
number of true discoveries one can hope to make).

There is a price to be paid for the simultaneous na-
ture of the bound, though. I have some doubts (hope-
fully unfounded) about the applicability to large-scale
testing situations as they arise, for example, in ge-
nomics or astronomy for two reasons: computational
complexity and statistical power.

It is obvious and also acknowledged by the authors
that the proposed procedure without shortcuts will be
impractical for even just a few dozen hypotheses. The
computational complexity is simply too high. An ex-
ample is shown in Figure 1 for a genomics regression
example with less than one hundred observations. The
proposed method takes already more than half a minute
for 12 predictor variables on a standard computer with
a 3 GHz CPU and the supplied cherry R-package
and the complexity seems to be (super-)exponential in
the number of hypotheses, as one would expect. The
proposed shortcuts are not applicable in all settings. If
they are applicable, they seem to be very effective in
reducing the computational complexity, making large-
scale testing feasible. Figure 1 shows that even testing
situations with > 106 tests are handled in about a sec-
ond or less.

Maybe more worrying, the statistical power of the
method deteriorates with an increasing number of hy-
potheses. This is due to the simultaneous nature of the
bound on the number of correctly rejected hypotheses
among all possible sets of hypotheses. I compared the
power for a simple setting, in which there are m in-
dependent p-values pi with i = 1, . . . ,m with distri-
bution pi ∼ U([0, ci]) and ci = 1 if i > 10 and ci =
0.1/m if i ≤ 10 (there are hence 10 false null hypothe-
ses). If rejecting all hypotheses, the lower bound for the
number of correctly rejected hypotheses is shown as a
function of m in Figure 1, along with the bound for
the same quantity proposed by Meinshausen and Rice
(2006). The proposed approach works very well up to
a few dozen hypotheses. If the number of hypotheses
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