ERRATA

STOCHASTIC CALCULUS OVER SYMMETRIC MARKOV PROCESSES WITHOUT TIME REVERSAL

Ann. Probab. 38 (2010) 1532-1569

BY KAZUHIRO KUWAE

Kumamoto University

1. Errata. The sentence "In view of Theorem 2.2 in [22], ... for q.e. $x \in E$." at page 1538 should be eliminated. The definitions of \mathcal{M}^d , \mathcal{M}^j and \mathcal{M}^{κ} are corrected to be like $\mathcal{M}^d := \{M \in \mathcal{M} \mid \langle M, N \rangle \equiv 0 \text{ for } N \in \mathcal{M}^c\}$.

The statements of Theorem 2.1 and Corollary 2.3 in [3] are incorrect, which come from the error in [1] (see [2]). The corrected statement of Theorem 2.1 in [3] can be found below. Its proof can be obtained in the same way as in [3]. The class $\hat{\mathcal{J}}$ introduced in [3] is unnecessary for the corrected statement.

THEOREM 1.1 (Corrected statement of Theorem 2.1 in [3]). There exists a one-to-one correspondence between \mathcal{J}/\sim and $\mathcal{M}_{loc}^{d,[[0,\zeta][}$ which is characterized by the relation that for $\phi \in \mathcal{J}$ (resp., $M \in \mathcal{M}_{loc}^{d,[[0,\zeta][}$), there exists $M \in \mathcal{M}_{loc}^{d,[[0,\zeta][}$ (resp., $\phi \in \mathcal{J}$) such that $\Delta M_t = \phi(X_{t-}, X_t)$, $t \in [0, \zeta[, \mathbb{P}_x$ -a.s. for q.e. $x \in E$. Moreover, we have $\langle M \rangle_t = \int_0^t \int_{E_{\partial}} \phi^2(X_s, y) N(X_s, dy) dH_s$ for all $t \in [0, \infty[\mathbb{P}_x$ -a.s. for q.e. $x \in E$.

We define subclasses of $\mathcal{M}_{loc}^{d, [\![0, \zeta [\![]]\!]}$ as follows:

$$\mathcal{M}_{\text{loc}}^{j,\llbracket 0,\zeta \llbracket} := \{ M \in \mathcal{M}_{\text{loc}}^{d,\llbracket 0,\zeta \rrbracket} \mid \phi(\cdot,\partial) = 0, \kappa \text{-a.e. on } E \},\$$
$$\mathcal{M}_{\text{loc}}^{\kappa,\llbracket 0,\zeta \rrbracket} := \{ M \in \mathcal{M}_{\text{loc}}^{d,\llbracket 0,\zeta \rrbracket} \mid \phi = 0, J \text{-a.e. on } E \times E \}.$$

Then we have that $M \in \mathcal{M}_{\text{loc}}^{j,[[0,\zeta][]}$, $N \in \mathcal{M}_{\text{loc}}^{\kappa,[[0,\zeta][]}$ imply $\langle M, N \rangle \equiv 0 \mathbb{P}_x$ -a.s. for q.e. $x \in E$, and every $M \in \mathcal{M}_{\text{loc}}^{[[0,\zeta][]}$ is decomposed to $M = M^c + M^j + M^{\kappa}$, where $M^c \in \mathcal{M}_{\text{loc}}^{c,[[0,\zeta][]}$, $M^j \in M_{\text{loc}}^{j,[[0,\zeta][]}$, $M^{\kappa} \in \mathcal{M}_{\text{loc}}^{\kappa,[[0,\zeta][]}$ have the properties $\langle M^c, M^j \rangle \equiv$

Received July 2011; revised August 2011.

MSC2010 subject classifications. Primary 31C25; secondary 60J25, 60J45, 60J75.

Key words and phrases. Symmetric Markov process, Dirichlet form, Revuz measure, martingale additive functionals of finite energy, continuous additive functional of zero energy, Nakao's CAF of zero energy, Fukushima decomposition, semi-martingale, Dirichlet processes, stochastic integral, Itô integral, Fisk–Stratonovich integral, time reversal operator, dual predictable projection.