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1. INTRODUCTION

First we should like to thank the editor for allowing
us to respond to interesting discussions from the dis-
cussants, Molenberghs, Kenward and Verbeke (MKV),
Louis and Meng, for the effort they have put into their
replies, and for the many important points that they
have raised.

We view statistics as comprising relationships be-
tween models and data, where a statistical model is
a formal mathematical formula which in some sense
represents the patterns in the data. It represents a tool
underlying the process of “making sense of figures.”
There are two processes linking models and data. The
first, which we term the forward process, can be written
as

model — data.

This stands for, “given a model, what would the data
that it generates look like?” We call this process sta-
tistical modelling and it forms the basis of probability
theory. The second process, which we term the back-
ward process, can be written as

model <— data.

This stands for, “given data, and a (guessed) model
what can we say about the parameters in that model?”
We call this process statistical inference, and it is dis-
played in Efron’s (1998) triangular diagram for 21st-
century statistical research, involving the three schools,
Fisherian, Bayesian and Frequentist. The process of in-
ference involves two procedures, namely model fitting
and model checking. In the first we find values for the
parameters in the model that fit the data best, and in
the second we use probability theory to check whether
the fit and, therefore, the assumed model is acceptable,
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by looking at the distribution of a suitable badness-of-
fit statistic. Model checking could lead to a new model
involving the two processes.

Among the discussants, MKV seem to suggest that
data contain information only about the parameters in
the marginal likelihood, but not about the unobserv-
ables (random effects) in the h-likelihood. Louis and
Meng say that extended likelihood such as h-likelihood
does indeed carry information about the unobservables,
but that nevertheless the Bayesian approach is best
suited for such inferences. We hope to show how the
ideas can be combined together in the h-likelihood
framework to give a new type of statistical inference.
We shall try to make clear the inferential status of our
framework.

The Bayesian framework is a well-defined mathe-
matical structure about which theorems can be proved.
However, it requires a statement of subjective prior be-
lief about the unknown parameters which we are un-
able to provide. Of course many attempts have been
made to define “objective” priors, but we believe them
not to have been successful. As Barnard (1995) used
to stress, in scientific inference the aim is to look for
objective conclusions that scientists can agree upon.
Senn (2008) puts it more strongly when he writes,
“In fact the gloomy conclusion to which I am drawn
on reading de Finetti (1974) is that ultimately the
Bayesian theory is destructive of any form of pub-
lic statistics.” An alternative description is that we are
looking across data sets for significant sameness, struc-
tures that remain unchanged when external conditions
vary, a view which has been strongly propagated by
Ehrenberg (1975). Another problem of using priors on
parameters is that however many data are collected,
no information is added regarding the parameters in
the prior. In contrast to the many possible priors in
Bayesian framework, in our system there is only one
corresponding prior likelihood (Pawitan, 2001) for pa-
rameters, namely L(6) = 1, and as data grow informa-
tion is accumulated on all parameters in the model.
Model checking is a vital part of inference and we re-
gard accumulated information as necessary for model



