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1. INTRODUCTION

We congratulate Imai, King and Nall on a valuable
paper which will help to improve the design and analy-
sis of cluster randomized studies. The authors make
two key contributions: (1) they propose a design-based
estimator for matched pair cluster randomized studies
that in many circumstances is a better estimator than
the harmonic mean estimator; (2) they present convinc-
ing evidence that the matched pair design, when ac-
companied with good inference methods, is more pow-
erful than the unmatched pair design and should be
used routinely.

In this discussion, we would like to contribute
our thoughts on how to construct the matched pairs.
Greevy, Lu, Silber and Rosenbaum (2004) point out
that in most randomized studies, only one or two vari-
ables are used in constructing the pairs. To remedy this,
Greevy et al. present a method for optimal multivari-
ate matching. They demonstrate in an example with
14 covariates and 132 units that the optimal matching
achieves substantially better balance on all 14 covari-
ates than an unmatched design. Greevy et al. consid-
ered the situation in which we want to use all available
units in the experiment. In cluster randomized studies,
because of cost considerations, we can often only use
some of the clusters, that is, there are N = 2k clusters
but we would only like to include 2m (m < k) clusters
in the experiment; see Murray (1998), Chapter 10, for
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several examples. How should we choose the best m

matched pairs? In our discussion, we compare several
methods of constructing matched pairs for this setting.

Our discussion is organized in the following way. We
introduce and discuss four methods of matching in the
next section. Then we conduct simulations to compare
these methods and the results are summarized in Sec-
tion 3 and 4. Conclusions of our findings are given in
Section 5.

2. FOUR METHODS OF MATCHING PAIRS

The goal of matching is to produce a design for the
experiment that has high power relative to other de-
signs. Matching methods seek to do this by defining
a distance between every pair of units and then mak-
ing the total distance between the matched units as
small as possible. One distance for matching is the
Mahalanobis distance (Rubin, 1979). We will compare
matching methods by comparing the total Mahalanobis
distance between the matched units.

We consider four methods of constructing m match-
ed pairs when there are N = 2k (k > m) units. Three
of the methods make use of the optimal nonbipartite
matching algorithm described by Greevy et al. (2004)
which, for a given 2r units and a (2r) × (2r) distance
matrix, returns the r pairs which minimize the total dis-
tance between the units in the pairs.

1. The random method. A simple random sample of
2m units from the N units is selected. The selected
units are matched optimally using the optimal non-
bipartite matching algorithm.

2. The ranking method. Optimal nonbipartite match-
ing is applied to construct the k pairs from all 2k

units which minimize the total distance between
matched pairs. Then, the m pairs which have the
smallest distance are selected. King et al. (2007) use
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