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Comments on Article by Yin

Ming-Hui Chen∗ and Sungduk Kim†

We would like to congratulate the author for a nice development of the Bayesian
Generalized Method of Moments (BGMM). BGMM is a natural extension of the classical
GMM. On the one hand, BGMM enjoys asymptotic properties and estimation efficiency
of GMM; on the other hand, BGMM has a better computational property due to the
recent advance in Markov chain Monte Carlo (MCMC) sampling. Therefore, BGMM is
potentially very useful when the parameter estimation is of primary interest especially
in statistical analysis of correlated, longitudinal or repeated measurement data.

The BGMM is primarily based on the moment conditions, instead of the likelihood.
Thus, the “likelihood” used in constructing the “posterior distribution” in the BGMM is
not the usual model-based likelihood function. This may be advantageous when the true
likelihood is difficult to derive. However, in the BGMM framework, formal Bayesian
model comparisons cannot be carried out as the likelihood function or the predictive
distribution is not defined. Since the construction of the BGMM is primarily based on
the marginal distribution model, the success of the BGMM in estimating the regression
coefficients for the correlated data heavily relies on an adequate specification of the
moment conditions. An immediate practical question is: how many moment conditions
or what moment conditions need to be specified in order to capture the true correlation
matrix? We suspect that when the moment conditions are not correctly specified, the
standard deviations of Bayesian estimators based on the BGMM can be over-stated or
under-stated especially when the sample size is relatively small. As the models cannot
be compared via a usual Bayesian model comparison criterion such as the Bayes factor or
the Deviance Information Criterion (Spiegelhalter et al. (2002)) and the true correlation
structure is unknown in the BGMM, it becomes quite challenging and difficult to know
how many C(j)’s are needed in order to achieve reliable standard deviations of the
Bayesian estimators. Although the author has proposed several possible choices of
C(j)’s, this issue has not been fully addressed. A BGMM estimator is asymptotically
unbiased. However, the BGMM may fail to accurately estimate the certainty of a
Bayesian estimator, which may be a major concern for using the BGMM.

To gain a better understanding of the BGMM and to further examine the perfor-
mance of this method, we have conducted three simulation studies. In all simulations, we
consider the similar regression model used in Section 3.3 with K = 4 and two covariates
(Z1ik, Z2ik), i.e.,

Yik = β0 + β1Z1ik + β2Z2ik + εik.

The covariate distributions for (Z1ik, Z2ik) are the same as those given in Section 3.3.
That is, Z1ik ∼ N(0, 1) and Z2ik ∼ Bernoulli(0.5). The true parameter values are
β0 = 0.2, β1 = 0.5 and β2 = −0.5. Also, 500 data sets of sample size n = 50 were
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