ON SOME PROBLEMS IN THE ARTICLE EFFICIENT LIKELIHOOD ESTIMATION IN STATE SPACE MODELS BY CHENG-DER FUH [Ann. Statist. 34 (2006) 2026–2068]

BY JENS LEDET JENSEN

University of Aarhus

1. Introduction. Upon reading the paper *Efficient Likelihood Estimation in State Space Models* by Cheng-Der Fuh I found a number of problems in the formulations and a number of mathematical errors. Together, these findings cast doubt on the validity of the main results in their present formulation. A reformulation and new proofs seem quite involved.

The paper, *Efficient Likelihood Estimation in State Space Models* deals with asymptotic properties of the maximum likelihood estimate in hidden Markov models. The hidden Markov chain is X_n , and the observed process is ξ_n where ξ_n conditioned on the past and the hidden process depends on (X_n, ξ_{n-1}) only. The approach used is to add an iterated function system M_n , and to consider the Markov process (X_n, ξ_n, M_n) . This is very much akin to the method in Douc and Matias [1], and I will use this article as a background for my comments.

2. Problems.

2.1. Definition of iterated function system. The first basic definition in the paper is a function $\mathbf{P}_{\theta}(\xi_j) : \mathbf{M} \to \mathbf{M}$ that maps a function $h \in \mathbf{M}$ into a new function in **M** (page 2031),

$$\mathbf{P}_{\theta}(\xi_j)h(x) = \int_{y \in \mathcal{X}} p_{\theta}(x, y) f(\xi_j; \theta | y, \xi_{j-1})h(y)m(dy).$$

[It is unclear why the author states that $\mathbf{P}_{\theta}(\xi_j)$ is a function on $(\mathcal{X} \times \mathbf{R}^d) \times \mathbf{M}$ where \mathcal{X} is the state space of the Markov chain.] The paper next defines the composition $\mathbf{P}_{\theta}(\xi_{j+1}) \circ \mathbf{P}_{\theta}(\xi_j)h$ by first applying $\mathbf{P}_{\theta}(\xi_{j+1})$ to *h* and then applying $\mathbf{P}_{\theta}(\xi_j)$ to the result. Using these two definitions we have

$$\mathbf{P}_{\theta}(\xi_n) \circ \cdots \circ \mathbf{P}_{\theta}(\xi_1) \circ \mathbf{P}_{\theta}(\xi_0) \pi_{\theta}$$

= $\int \pi_{\theta}(x_n) \left\{ \prod_{j=n}^{1} p_{\theta}(x_{j-1}, x_j) f(\xi_j; \theta | x_j, \xi_{j-1}) m(dx_j) \right\} f(\xi_0; \theta | x_0) m(dx_0).$

Received October 2008; revised September 2009.