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Comment: Struggles with Survey
Weighting and Regression Modeling
Sharon L. Lohr

In the ideal samples of survey sampling textbooks,
weights are the inverses of the inclusion probabil-
ities for the units. But nonresponse and undercov-
erage occur, and survey statisticians try to compen-
sate for the resulting bias by adjusting the sampling
weights. There has been much debate about when and
whether weights should be used in analyses, and how
they should be constructed. Professor Gelman deserves
thanks for clarifying the discussion about weights and
for raising interesting issues and questions.

If we use weights in estimation, what would we like
them to accomplish? Here are some desirable proper-
ties:

1. The mean squared error (MSE) of estimators is
smaller if the weights are used than if the weights
are not used.

2. Estimators produced using the weights are inter-
nally consistent. Thus, if Ŷ1 is the estimated total
medical expense for men in the population, Ŷ2 is
the estimated total medical expense for women in
the population and Ŷ3 is the estimated total med-
ical expense for everyone in the population, then
Ŷ1 + Ŷ2 = Ŷ3.

3. We may have independent population counts from
a census or administrative data source for sex, age,
race/ethnicity and other variables. If we apply the
weights to estimate these quantities, the estimates
equal the true population counts. We refer to this as
the calibration property.

4. The weight for unit i in the sample can be thought
of as the number of population units represented by
unit i.

5. The estimators have optimal properties under super-
population models that are thought to fit the data.

6. The estimators are robust to misspecifications of the
superpopulation models.
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7. The procedure for constructing the weights is ob-
jective and transparent.

All of these are good properties. The problem is that
one can only rarely construct a set of weights that sat-
isfies all of them simultaneously.

In this discussion, we distinguish between design
weights and weighting adjustments used for poststrati-
fication. The design weights are

di = 1

P(unit i included in sample)
.

The design weight di is a property of unit i; un-
der design-based inference, it is a fixed constant. If
two samples are drawn independently using the same
probability sampling design and if each sample in-
cludes unit i, the weight di for the unit is the same
in each sample. Poststratification weight adjustments,
however, depend on the selected sample S. In the sim-
plest case of ratio adjustment, we multiply each sam-
pling weight di by the factor gi(S, x) = X/X̂, where
X is the known population total of auxiliary variable x

and X̂ = ∑
i∈S dixi . The resulting weight is wi(S, x) =

digi(S, x); the weight depends on the sample selected
and on the auxiliary variable x through the estimated
total X̂. The ratio estimator of the population total is
then Ŷr = (X/X̂)

∑
i∈S diyi = ∑

i∈S wi(S, x)yi . Simi-
larly, for generalized regression estimation,

gi(S,x) = 1 + (X − X̂)T

(∑
j∈S

dj xj xT
j /cj

)−1

xi/ci,

where the scaling constant ci may depend on x. For
the special case of poststratification, gi(S,x) = Nc/N̂c

for observation i in poststratification class c. Thus, for
poststratification, the weight adjustments are positive;
for general regression models, however, the weight ad-
justments are unrestricted. The weight wi(S, x) varies
from sample to sample. Since the weight adjustment
depends only on x, though, and not on y, the weight
wi(S, x) will be the same for every response variable
used in that sample.

The weights proposed by Gelman using hierarchical
models add dependence on y to the mix. When a proper
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