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Comment: Fisher Lecture: Dimension
Reduction in Regression
Ronald Christensen

I am pleased to participate in this well-deserved
recognition of Dennis Cook’s remarkable career.

Cook points out Fisher’s insistence that predictor
variables in regression be chosen without reference to
the dependent variable. Reduction by principal compo-
nents clearly satisfies that dictum. One of my primary
objections to partial least squares regression when
I first encountered it as an alternative to principal com-
ponents was that the predictor variables were being
chosen with reference to the dependent variable. (I now
have other objections to partial least squares.) Yet on
the other hand, variable selection in regression is well
accepted and it clearly chooses variables based on their
relationship to the dependent variable. Perhaps variable
selection is better thought of as a form of shrinkage es-
timation rather than as a process for choosing predictor
variables.

Cook also reiterates something that I think is diffi-
cult to overemphasize: Fisher’s point that “More or less
elaborate forms [for models] will be suitable according
to the volume of the data.” We see this now on a regular
basis as modern technology provides larger data sets to
which elaborate models are regularly fitted.

With regard to Cook’s work, it seems to me that the
key issue in the development of Cook’s models (2),
(5), (10) and (13) is whether they are broadly reason-
able. The question did not seem to be extensively ad-
dressed but Cook shows that much can be gained if
we can reasonably use them. When they are appropri-
ate, the results in the corresponding propositions are
rather stunning. It has long been known that the best
regression model available—technically the best pre-
dictor of a random variable y based on a p-dimensional
random vector x—is the conditional mean E(y|x). The
problem with this result is that it requires us to know
the joint distribution of (x′, y). Most of what we com-
monly recognize as regression analysis is an attempt to

Ronald Christensen is Professor, Department of
Mathematics and Statistics, University of New Mexico,
Albuquerque, New Mexico 87131-0001, USA (e-mail:
fletcher@stat.unm.edu).

model the relationship E(y|x). This includes linear re-
gression, nonlinear regression, generalized linear mod-
els and the various approaches to “nonparametric” (ac-
tually, highly parametric) regression. Under the models
being considered, there exists a p × d matrix � such
that

y|x ∼ y|�′x.

This means that E(y|x) = E(y|�′x) regardless of what
modeling strategy we choose to use. If anything, this
dimensionality reduction from p to d is of more im-
portance to nonparametric regression than other forms
because, as the number of predictor variables increases,
nonparametric regression gets hit harder by the curse of
dimensionality than less highly parametric forms. As
a result, nonparametric regression should benefit most
from the existence of a generally valid reduction in di-
mensionality.

The issue with these four models is to estimate the
column space of �, say, C(�). In the first six sections,
the results are all closely tied to the eigenvectors (prin-
cipal component vectors) of some estimated covariance
matrix for the predictor variables x, say �̂. For model
(2), the space is spanned by the first d principal compo-
nent vectors of the usual �̂. For model (5), the space is
spanned by the first d principal component vectors of
a restricted version of �̂. For models (10) and (13), the
estimation procedure is a bit more complicated. The
key is that for both models (10) and (13) the popula-
tion covariance matrix of x can be written as

� = �V DV ′� + �0V0D0V
′
0�0,

with D and D0 diagonal matrices, in such a way that

�(�V ) = (�V )D, �(�0V0) = (�0V0)D0.

This implies that the eigenvectors of � are either in
C(�) or in C(�0) ≡ C(�)⊥, the orthogonal comple-
ment of C(�). The problem is to establish which d out
of the p orthogonal eigenvectors belong in C(�). To
estimate C(�), find the orthogonal eigenvectors of �̂,
say, v1, . . . , vp , and check the likelihood of every one
of the p choose d combinations that has d of the vi ’s
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