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1. INTRODUCTION

We are very grateful to the Executive Editors George
Casella and Edward George for their active interest in
our paper and for organizing this challenging discus-
sion. We also thank all the discussants for their insight-
ful and stimulating comments.

When we submitted the original manuscript in 2003,
we were tempted to go for a more general paper on
kernel methods. We decided to focus on support vector
machines (SVMs), waiting for a mature development
of the new and exciting ideas related to kernel methods,
such as manifold learning and other related topics. We
will refer to some of these methods below. Let us begin,
first, with some general considerations.

Regarding the question of the dimensionality in-
duced by the feature space, Hastie and Zhu remark in
their comment that usual kernels do not automatically
lead to infinite-dimensional feature spaces. They give
a nice example that involves the radial (Gaussian) ker-
nel function. This agrees with results in Keerthi and
Lin [8], where an explanation of the performance of
the Gaussian kernel is given when, according to the
notation in the comment by Hastie and Zhu, γ → 0
and λ is chosen in the appropriate way. In this case,
the SVM classifier converges to a linear SVM classi-
fier, and the effective dimension of the kernel is finite,
agreeing with the empirical conclusion provided by the
discussants.

We also agree with the assertions of some of the
discussants regarding the probabilistic interpretability
of the SVM output (the sign of some estimated func-
tion). Our comment was rather along the line of Sollich
[18], who proposed to make Bayesian methods avail-
able for the support vector methodology, while leaving
as much as possible of the standard SVM framework
intact. This is not an easy task. In fact, as Bartlett, Jor-
dan and McAuliffe remark, sparseness and the precise
estimation of conditional probabilities are hard to rec-
oncile.

Regarding the role of differentiability in SVMs
(misplaced in the opinion of Bartlett, Jordan and
McAuliffe), it is convenient to recall that the differ-
entiable formulation of the SVM problem allows its
solution by the use of standard Newton-type methods

for convex optimization. Under the availability of sec-
ond order derivatives (and this is the case for SVMs),
these methods are known to be the most efficient ones
for the solution of smooth problems.

We thank some of the discussants for turning the
attention of the reader to general kernel methods.
In particular, we appreciate the Bartlett, Jordan and
McAuliffe effort to make clearer the potential impact
of reproducing kernel Hilbert space (RKHS) methods.
Regarding the origins of RKHS in statistics, for the
sake of completeness, we strongly recommend reading
the conversation with Emanuel Parzen in [14].

Given the history of SVMs, perfectly outlined by
Wahba in the introduction of her comment, we do
not like to think of SVMs as a “modest” variant of
some standard statistical methodology (as suggested by
Bartlett, Jordan and McAuliffe). Using a similar (a pos-
teriori) reasoning, some strict mathematicians might
think that RKHS methods in statistics are just a small
variation on the general theory of Hilbert spaces. Of
course, this is far from true. We rather think that the
support vector methodology, followed closely by ker-
nel methods, has been able to synthesize a variety of
techniques from different fields, leading to a more uni-
fied framework for learning theory [5]. In addition,
the geometrical viewpoint of SVMs allows new ap-
proaches to long-familiar problems, as illustrated in the
next section.

2. KERNEL METHODS REVISITED

One interesting point regarding the geometrical
interpretation of SVMs is that they have stirred the de-
velopment of new techniques driven by the geometrical
properties of the kernel. Some of these techniques have
not so far been mentioned in the discussion. We now
briefly describe two relevant examples.

2.1 One-Class SVMs

An example of a new method that has arisen from
a geometrical point of view is one-class SVMs [16].
One-class SVMs deal with a problem related to esti-
mating high density regions from data samples. The
method computes a binary function that takes the value
+1 in “small” regions that contain most data points and
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