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INTRODUCTION

The support vector machine (SVM) has played an
important role in bringing certain themes to the fore
in computationally oriented statistics. However, it is
important to place the SVM in context as but one mem-
ber of a class of closely related algorithms for nonlin-
ear classification. As we discuss, several of the “open
problems” identified by the authors have in fact been
the subject of a significant literature, a literature that
may have been missed because it has been aimed not
only at the SVM but at a broader family of algorithms.
Keeping the broader class of algorithms in mind also
helps to make clear that the SVM involves certain
specific algorithmic choices, some of which have fa-
vorable consequences and others of which have unfa-
vorable consequences—both in theory and in practice.
The broader context helps to clarify the ties of the SVM
to the surrounding statistical literature.

We have at least two broader contexts in mind for the
SVM. The first is the family of “large-margin” clas-
sification algorithms—a class that includes boosting
and logistic regression. All of these algorithms involve
the minimization of a convex contrast or loss function
that upper bounds the 0–1 loss function. The SVM
makes a specific choice of convex loss function—the
so-called hinge loss. Hinge loss has some potentially
desirable properties (e.g., sparseness) and some poten-
tially undesirable properties (e.g., lack of calibration
to posterior probabilities). As we discuss, much of the
theoretical analysis of the SVM is best carried out by
focusing on convexity and abstracting away from the
details of specific loss functions.

Second, as the authors note, the SVM is an instance
of the broader family of statistical procedures based on
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reproducing kernel Hilbert spaces (RKHSs). The au-
thors’ emphasis is on the use of RKHS methods to pro-
vide basis expansions for discriminant functions and
regression functions. RKHS ideas have, however, been
carried significantly further in recent years, enliven-
ing areas of computationally oriented statistics beyond
classification and regression. We wish to convey some
of the reasons for this broader interest in RKHS-based
approaches.

There are both computational and statistical motiva-
tions for focusing on methods based on convexity and
reproducing kernel Hilbert spaces. In the remainder of
this discussion we attempt to disentangle some of these
motivations, but we wish to emphasize at the outset that
it is precisely because these methods bring computa-
tional and statistical considerations together that they
are so interesting.

CONVEXITY

The SVM is one example of a general strategy for
solving the binary classification problem via a “con-
vex surrogate loss function.” To develop this perspec-
tive, let us define binary classification as the problem of
choosing a discriminant function f :X → R that min-
imizes misclassification risk,

R(f ) = P
(
Y �= sgn(f (X))

) = E�(Yf (X)),

where X ∈ X is the covariate, Y ∈ {±1} is the binary
response, and �(α) = 1 for α ≤ 0 and = 0 otherwise.
The family of large-margin classification algorithms at-
tacks this problem indirectly by minimizing a quantity
known as the φ-risk,

Rφ(f ) = Eφ(Yf (X)),

where φ : R → R is a surrogate for the loss function �,
and Yf (X) is called the margin of f on the observa-
tion (X,Y ). The margin indicates not only whether the
observation is correctly classified by f , but how close
f comes to choosing the opposite label. The surrogate
loss function φ is chosen so that large margins corre-
spond to small losses.

Given a data set (X1, Y1), . . . , (Xn,Yn), we can form
the empirical φ-risk

R̂φ(f ) = 1

n

n∑
i=1

φ(Yif (Xi))
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