
Statistical Science
2006, Vol. 21, No. 3, 352–357
DOI: 10.1214/088342306000000466
Main article DOI: 10.1214/088342306000000493
© Institute of Mathematical Statistics, 2006

Comment
Trevor Hastie and Ji Zhu

We congratulate the authors for a well written and
thoughtful survey of some of the literature in this area.
They are mainly concerned with the geometry and the
computational learning aspects of the support vector
machine (SVM). We will therefore complement their
review by discussing from the statistical function esti-
mation perspective. In particular, we will elaborate on
the following points:

• Kernel regularization is essentially a generalized
ridge penalty in a certain feature space.

• In practice, the effective dimension of the data ker-
nel matrix is not always equal to n, even when the
implicit dimension of the feature space is infinite;
hence, the training data are not always perfectly sep-
arable.

• Appropriate regularization plays an important role in
the success of the SVM.

• The SVM is not fundamentally different from many
statistical tools that our statisticians are familiar
with, for example, penalized logistic regression.

We acknowledge that many of the comments are based
on our earlier paper Hastie, Rosset, Tibshirani and
Zhu (2004).

KERNEL REGULARIZATION AND THE
GENERALIZED RIDGE PENALTY

Given a positive definite kernel K(x,x′), where x,x′
belong to a certain domain X, we consider the general
function estimation problem

min
β0,f

n∑
i=1

�
(
yi, β0 + f (xi )

) + λ

2
‖f (x)‖2

HK
.(1)

Here �(·, ·) is a convex loss function that describes the
“closeness” between the observed data and the fitted
model, and f is an element in the span of {K(·,x′),
x′ ∈ X}. More precisely, f ∈ HK is a function in the
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reproducing kernel Hilbert space HK (RKHS) gener-
ated by K(·, ·) (see Burges, 1998; Evgeniou, Pontil and
Poggio, 2000; and Wahba, 1999, for details).

Suppose the positive definite kernel K(·, ·) has a
(possibly finite) eigenexpansion,

K(x,x′) =
∞∑

j=1

δjφj (x)φj (x′),

where δ1 ≥ δ2 ≥ · · · ≥ 0 are the eigenvalues and
φj (x)’s are the corresponding eigenfunctions. Ele-
ments of HK have an expansion in terms of these
eigenfunctions

f (x) =
∞∑

j=1

βjφj (x),(2)

with the constraint that

‖f ‖2
HK

def=
∞∑

j=1

β2
j /δj < ∞,

where ‖f ‖HK
is the norm induced by K(·, ·).

Then we can rewrite (1) as

min
β0,β

n∑
i=1

�

(
yi, β0 +

∞∑
j=1

βjφj (xi )

)
+ λ

∞∑
j=1

β2
j

δj

,(3)

and we can see that the regularization term ‖f ‖2
HK

in
(1) can be interpreted as a generalized ridge penalty,
where eigenfunctions with small eigenvalues in the ex-
pansion (2) get penalized more and vice versa.

Formulation (3) seems to be an infinite dimensional
optimization problem, but according to the representer
theorem (Kimeldorf and Wahba, 1971; Wahba 1990),
the solution is finite dimensional and has the form

f (x) =
n∑

i=1

αiK(x,xi ).

Using the reproducing property of HK , that is,
〈K(·,xi ),K(·,xi′)〉 = K(xi ,xi′), (3) also reduces to a
finite-dimensional criterion,

min
β0,α

L(y, β0 + Kα) + λαTKα.(4)

Here we use vector notation, K is the n × n data ker-
nel matrix with elements equal to K(xi ,xi′), i, i′ =
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