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Comment
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1. INTRODUCTION

The authors are to be commended for jumping in
to describe support vector machines (SVMs), not an
easy thing to do since the the literature for SVMs
has grown at least exponentially in the last few years.
A Google search for “support vector machines” gave
“about 1,180,000” hits as of this writing. The authors
have nevertheless made a nice selection of important
points to emphasize. As noted, SVMs were proposed
for classification in the early 1990s by arguments like
those behind Figure 1 in their paper. The use of SVMs
grew rapidly among computer scientists, as it was
found that they worked very well in all kinds of prac-
tical applications. The theoretical underpinnings that
went with the original proposals were different than
those in the classical statistical literature, for example,
those related to Bayes risk, and so had less impact in
the statistical literature. The convergence of SVMs and
regularization methods (or, rather the convergence of
the “SVM community” and the “regularization com-
munity”) was a major impetus in the study of the (clas-
sical) statistical properties of the SVM. One point at
which this convergence took place was at an Amer-
ican Mathematical Society meeting at Mt. Holyoke
in 1996. The speaker was describing the SVM with the
so-called kernel trick when an anonymous person at the
back of the room remarked that the SVM with the ker-
nel trick was the solution to an optimization problem
in a reproducing kernel Hilbert space (RKHS). Once it
was clear to statisticians that the SVM can be obtained
as the result of an optimization/regularization problem
in a RKHS, tools known to statisticians in this context
were rapidly employed to show how the SVM could be
modified to take into account nonrepresentative sam-
ple sizes, unequal misclassification costs and more than
two classes, and to show in each case that it directly tar-
gets the Bayes risk under very general circumstances
(see also [5, 8]). Thus, a “classical” explanation of why
they work so well was provided.
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2. MERCER’S KERNELS AND POSITIVE
DEFINITE FUNCTIONS

Let T be a.d.o. (any dirty old) domain and let
K(s, t), s, t ∈ T , be a symmetric, positive definite
function of two variables; K is said to be positive def-
inite if for any n, and any t1, . . . , tn ∈ T , the n × n

matrix with ij th element K(ti, tj ) is nonnegative def-
inite. In the early SVM literature, as well as in the
present paper, the kernel is described as having a rep-
resentation K(s, t) = ∑∞

ν=1 λν�ν(s)�ν(t). Here the
(nonnegative) λν and the �ν are the eigenvalues and
eigenvectors of K . A representation as in this sum is
sufficient for K to be positive definite (see [13] on the
Mercer Hilbert–Schmidt theorem), but the so-called
radial basis functions (RBF) popular in machine learn-
ing, of the form K(s, t) = k(‖s − t‖), s, t in Euclid-
ean d-space Ed , do not have a countable sequence of
eigenvalues and eigenvectors—complex exponentials
play the role of eigenvectors (see [3]). The Gaussian
kernel Kc(x, y) = e−‖x−y‖2/c is such an example. Al-
though the notion of a countable expansion was used in
uncoupling the linear SVM from its linearity restriction
(and seems to be repeated over and over), the lack of a
countable set of eigenvectors and eigenvalues does not
affect the use of the Gaussian kernel or any other pos-
itive definite function in an SVM; as the authors note,
only values of K are needed. The RBF probably just do
not want to be called “Mercer’s kernels” (!). Positive
definite functions are sometimes called reproducing
kernels, relating to their association with RKHS [1].

Given a collection of objects (which could be vec-
tors, images, sounds, graphs, texts, trees, . . . ) in a.d.o.
domain T , a positive definite matrix with ij entry
K(i, j) defines a (squared) distance dij between the ith
and j th object as

dij = K(i, i) + K(j, j) − 2K(i, j)

(and, in addition, this distance comes with an inner
product). It can be argued that using distance between
objects, defined in some way, is truly fundamental to
classification and, therefore, positive definite kernels,
since they provide a distance, play a fundamental role.
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