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Gibbs Samplers
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1. INTRODUCTION

We congratulate the authors on a review of conver-
gence rates for Gibbs sampling routines. Their com-
bined work on studying convergence rates via or-
thogonal polynomials in the present paper under dis-
cussion (which we will denote as DKSC from here
onward), via coupling in Diaconis, Khare and Saloff-
Coste (2006), and for multivariate samplers in Khare
and Zhou (2008), enhances the toolbox of theoretical
convergence analysis. This has the potential of opening
new avenues of pursuit for gauging chain convergence
in practice, and optimally implementing Gibbs sampler
strategies. In this discussion, we focus on the latter,
within the context of the random scan Gibbs sampler
presented in DKSC. Although the analysis in DKSC
does not seem to extend to the random scan implemen-
tation we consider, a study of convergence rate and
estimator precision is possible, in theory, for special
cases as well as in general practice. Our aim is to mo-
tivate further research within the context of DKSC to
identify objective criteria for optimizing implementa-
tion of the random scan Gibbs sampler.

2. REVISITING RANDOM SCAN GIBBS SAMPLERS

The random scan Gibbs sampler considered in
DKSC has an equal likelihood of visiting each coor-
dinate, (x, θ), during an iteration of the sampler. As
put forth by the seminal convergence theory work of
Liu, Wong and Kong (1995) and discussed more re-
cently by Levine and Casella (2006), an optimal im-
plementation of the random scan strategy may visit
less often components with a marginal that is easier
to understand or describe. For example, in the bivariate
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cases of DKSC, each iteration of the random scan vis-
its x with probability α1 and θ with probability 1 −α1,
where α1 ∈ (0,1), not necessarily equal to 0.5. For the
general multivariate problem of sampling a d-vector X,
the random sweep strategy is characterized by selection
probabilities α = (α1, α2, . . . , αd), where

∑d
i=1 αi = 1,

αi not necessarily equal to 1/d for all i.
In the notation of DKSC, the transition kernel of the

random scan Gibbs sampler for a function g ∈ L2(P )

is

K̄g(x, θ) = α1

∫
�

g(x, θ ′)π(θ ′|x)π(dθ ′)
(1)

+ (1 − α1)

∫
X

g(x′, θ)fθ (x
′)μ(dx′).

Unfortunately, K̄ in (1) is not readily diagonalizable
as the decomposition in the proof of DKSC Theo-
rem 3.1, part (c), relies on the equal selection proba-
bilities (α1 = 0.5) to partition the transition kernel act-
ing on appropriate functions g. However, in the cases
of discrete state spaces and Gaussian target distribu-
tions, both considered in the exposition of DKSC, we
may identify explicit convergence rates and optimally
choose selection probabilities. In the following sec-
tions, we elaborate on these findings and present an
alternative approach with estimator precision as an ob-
jective criterion. We also suggest avenues for future re-
search within the context of DKSC to address the ran-
dom scan Gibbs sampler decision problem.

3. CONVERGENCE RATES

Convergence rates of Gibbs sampling routines may
be formulated in two special cases: Gaussian and dis-
crete target distributions. DKSC Section 6.3 eludes to
the case of Gaussian distributions, identifying the work
of Goodman and Sokal (1989), that shows convergence
rates as the largest eigenvalue of a matrix related to
the dispersion matrix and an autoregressive transition
of the Markov chain (see Khare and Zhou, 2008, as
well). Amit (1996) and Roberts and Sahu (2001) pro-
vide an alternative expression which lends well to our
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