CORRECTION

IMPROPER REGULAR CONDITIONAL DISTRIBUTIONS

BY TEDDY SEIDENFELD, MARK J. SCHERVISH AND JOSEPH B. KADANE

Carnegie Mellon University

A strict inequality appears in Definition 6 where a weak inequality is needed. We reproduce Definition 6 here.

DEFINITION 6. Fix ω and consider those A such that $\omega \in A \in A$. If for some $\omega \in A \in A$, $P(A|A)(\omega) = 0$, say that $P(\cdot|A)$ is *maximally improper at* ω . Otherwise, if for each $\omega \in A \in A$, $1 \ge P(A|A)(\omega) > 0$, say that the rcd is *modestly* proper at ω .

At the bottom of page 1614, we are not precise in the definition of a Borel space. The condition should have read that there is a one-to-one measurable function with measurable inverse between (Ω, \mathcal{B}) and (E, \mathcal{E}) , where *E* is a Borel subset of the reals and \mathcal{E} is the Borel σ -field of subsets of *E*. After the remaining corrections below, our use of the term "Borel space" conforms with this definition.

Some conditions were left out of Theorem 4 and Lemma 3. The proof of Lemma 3 also had some errors that made it almost impossible to follow. Finally, the proof of Theorem 4 was said to be straightforward from Theorem 3. We include here the restatements of both results with the missing conditions, the revised proof of Lemma 3, and a proof of Lemma 4. The only application of Lemma 4 given in the original paper is to the proof of Corollary 2. The additional conditions given here are satisfied in that case.

THEOREM 4. Assume that \mathcal{A} is an atomic sub- σ -field of \mathcal{B} . Let (Θ, \mathcal{D}) be a Borel space, with a probability measure μ . For each $\theta \in \Theta$, let P_{θ} be a probability on \mathcal{B} such that for every $B \in \mathcal{B}$, $P_{\theta}(B)$ is a \mathcal{D} -measurable function of θ . Let $P(\cdot)$ be defined on \mathcal{B} by $P(\cdot) = \int_{\Theta} P_{\theta}(\cdot) d\mu(\theta)$. Assume that, for μ -almost all θ , $P_{\theta}(\cdot|\mathcal{A})$ is a maximally improper rcd for P_{θ} and that it is $\mathcal{A} \otimes \mathcal{D}$ -measurable as a function of (ω, θ) . Also, assume that the set

 $B^* = \{(\omega, \theta) : P_{\theta}(\cdot | A) \text{ is maximally improper at } \omega\},\$

is in $\mathcal{A} \otimes \mathcal{D}$. Then there is a maximally improper version of $P(\cdot|\mathcal{A})$.

Received October 2004; revised April 2005.