CORRECTION

IMPROPER REGULAR CONDITIONAL DISTRIBUTIONS

By Teddy Seidenfeld, Mark J. Schervish and Joseph B. Kadane
Carnegie Mellon University

A strict inequality appears in Definition 6 where a weak inequality is needed. We reproduce Definition 6 here.

Definition 6. Fix ω and consider those A such that $\omega \in A \in \mathcal{A}$. If for some $\omega \in A \in \mathcal{A}, P(A \mid \mathcal{A})(\omega)=0$, say that $P(\cdot \mid \mathcal{A})$ is maximally improper at ω. Otherwise, if for each $\omega \in A \in \mathcal{A}, 1 \geq P(A \mid \mathcal{A})(\omega)>0$, say that the red is modestly proper at ω.

At the bottom of page 1614, we are not precise in the definition of a Borel space. The condition should have read that there is a one-to-one measurable function with measurable inverse between (Ω, \mathscr{B}) and (E, \mathscr{E}), where E is a Borel subset of the reals and \mathcal{E} is the Borel σ-field of subsets of E. After the remaining corrections below, our use of the term "Borel space" conforms with this definition.

Some conditions were left out of Theorem 4 and Lemma 3. The proof of Lemma 3 also had some errors that made it almost impossible to follow. Finally, the proof of Theorem 4 was said to be straightforward from Theorem 3. We include here the restatements of both results with the missing conditions, the revised proof of Lemma 3, and a proof of Lemma 4. The only application of Lemma 4 given in the original paper is to the proof of Corollary 2. The additional conditions given here are satisfied in that case.

THEOREM 4. Assume that \mathcal{A} is an atomic sub- σ-field of \mathfrak{B}. Let (Θ, \mathcal{D}) be a Borel space, with a probability measure μ. For each $\theta \in \Theta$, let P_{θ} be a probability on \mathfrak{B} such that for every $B \in \mathscr{B}, P_{\theta}(B)$ is a \mathscr{D}-measurable function of θ. Let $P(\cdot)$ be defined on \mathscr{B} by $P(\cdot)=\int_{\Theta} P_{\theta}(\cdot) d \mu(\theta)$. Assume that, for μ-almost all θ, $P_{\theta}(\cdot \mid \mathcal{A})$ is a maximally improper $r c d$ for P_{θ} and that it is $\mathcal{A} \otimes \mathscr{D}$-measurable as a function of (ω, θ). Also, assume that the set

$$
B^{*}=\left\{(\omega, \theta): P_{\theta}(\cdot \mid \mathcal{A}) \text { is maximally improper at } \omega\right\}
$$

is in $\mathcal{A} \otimes \mathscr{D}$. Then there is a maximally improper version of $P(\cdot \mid \mathcal{A})$.

