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Professors Candès and Tao are to be congratulated for their innovative and valu-
able contribution to high-dimensional sparse recovery and model selection. The
analysis of vast data sets now commonly arising in scientific investigations poses
many statistical challenges not present in smaller scale studies. Many of these data
sets exhibit sparsity where most of the data corresponds to noise and only a small
fraction is of interest. The needs of this research have excited much interest in
the statistical community. In particular, high-dimensional model selection has at-
tracted much recent attention and has become a central topic in statistics. The main
difficulty of such a problem comes from collinearity between the predictor vari-
ables. It is clear from the geometric point of view that the collinearity increases as
the dimensionality grows.

A common approach taken in the statistics literature is the penalized likeli-
hood, for example, Lasso (Tibshirani [11]) and adaptive Lasso (Zou [12]), SCAD
(Fan and Li [7] and Fan and Peng [9]) and nonnegative garrote (Breiman [1]).
Commonly used algorithms include LARS (Efron, Hastie, Johnstone and Tibshi-
rani [6]), LQA (Fan and Li [7]) and MM (Hunter and Li [10]). In the present
paper, Candès and Tao take a new approach, called the Dantzig selector, which
uses �1-minimization with regularization on the residuals. One promising fact is
that the Dantzig selector solves a linear program, usually faster than the existing
methods. In addition, the authors establish that, under the Uniform Uncertainty
Principle (UUP), with large probability the Dantzig selector mimics the risk of the
oracle estimator up to a logarithmic factor logp, where p denotes the number of
variables.

We appreciate the opportunity to comment on several aspects of this article.
Our discussion here will focus on four issues: (1) connection to sparse signal re-
covery in the noiseless case; (2) the UUP condition and identifiability of the model;
(3) computation and model selection; (4) minimax rate.

1. Sparse signal recovery. The “large p, small n” regression problem consid-
ered in this paper can be viewed as a generalization of the classical linear algebra
problem in which one wishes to solve the linear equation

y = Xβ,(1)
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