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I read Distance Covariance, by Drs. Szekely and Rizzo, with great interest. This
is an elegant contribution to statistical theory; the three-way equivalence between
a weighted expectation of the difference between Brownian covariance and two
very different formulations of V 2 is very attractive, and together with the examples
make a strong case for distance covariance.

But like many statisticians, I spend much of my working life analyzing genomic
data sets and so am interested in how distance covariance and correlation might be
used in high dimensional data with relatively small sample sizes. In these appli-
cations it is often more important to characterize the relationships between genes
than to formally test for independence. And the Pearson correlation coefficient,
complimented by a well-developed and widely-used theory of linear models and
matrix methods, is highly applicable on such data sets. The restriction to linear
relationships between variables is arguably even an advantage; while Pearson’s
correlation may not capture all dependencies, we know a great deal about the in-
terpretation of results from its application.

It is, of course, not possible to settle the question here, but some preliminary
thoughts follow on the potential utility of distance covariance, and particularly the
scaled distance correlation, in this setting.

Using the author’s notation, if (X,Y ) is a pair of random variables (vectors)
and (X,Y) a sample drawn from the joint distribution, the dependence statistics
Akl and Bkl are centered, interpoint distance matrices for X and Y respectively,
and V 2(X,Y) is the mean product moment of the entries in these two matrices.
Thus, the empirical distance covariance is a cross-variable covariance of within-
variable interpoint distances, and the distance correlation is the same, appropriately
scaled. In practice, this is similar to the correlation of correlations used by Lee et
al. (2003) and Parmigiani et al. (2004) to quantify the reproducibility of results
obtained on different microarray platforms or from independent gene expression
studies, but is more general, since it can be applied even to two, scalar-valued ran-
dom variables, and because of its potential to capture nonlinear as well as linear
dependencies.

This representation of the distance correlation offers some intuition into the
characteristics of the statistic. It is reflected in Theorem 4(iii), stating that
R(X,Y) = 1 only if Y can be obtained from X by orthogonal transformation,
since these rigid transformations preserve interpoint distances up to a scaling fac-
tor. It explains the ability, demonstrated in the first few examples, to capture non-
monotone relationships between two variables; samples with similar wavelength
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