doubt to most nonprobabilists, that probability could be treated as a rigorous mathematical discipline. In fact it is clear from their publications that many probabilists were uneasy in their research until their problems were rephrased in what was then nonprobabilistic language. For example, difference and differential equations for transition probabilities were suggested by sketchily described probability contexts, contexts then avoided as much as possible in the treatment and discussion of the equations. This uneasiness explains why it seemed more natural to Feller in 1955 than it does to Le Cam in 1985 to discuss convolutions of distribution functions rather than the corresponding sums of independent random variables.

Feller had a superb background in classical analysis, and accordingly devised a heavily formal version of the central limit theorem, whereas Lévy produced a rather vague but correct in principle corresponding version. As always, Lévy exploited his unparalleled intuition to the despair of his readers, who found his work vague and obscure, although insightful and instructive when finally mastered. Lévy was one of the first probabilists to treat sample functions and sequences in depth, but never fully accepted measure theory as the mathematical basis of probability. For example, to him conditional expectations were a part of the essence of probability, needing no formal general definition.

Comment

David Pollard

Professor Le Cam deserves our thanks for a fine piece of scholarship. I hope that others will be inspired by his example to share with us their understanding of important ideas in probability and statistics.

I was particularly pleased to read the high praise in Section 3 for Lindeberg’s proof of the central limit theorem. It is indeed surprising that the proof does not appear more often in standard texts (although Billingsley (1968) and Breiman (1988) should be added to the list of texts where it does appear), especially since the characteristic function approach is an effective source of confusion for beginners.

As Le Cam notes, the proof has even more to recommend it than its simplicity. It can be modified to give more information on the rate at which \(S_n \) converges in distribution to \(T_n \), and it is easily extended beyond the case of distribution functions on the real line. I’ll indicate briefly how this can be done.

Lindeberg’s argument depends on not much more than Taylor’s theorem to compare the expected value \(\mathbb{E} f(S_n) \) of a smooth function of \(S_n \) with the corresponding expected value \(\mathbb{E} f(T_n) \) for the sum of Gaussian increments. This translates into a bound on the difference \(\Delta(x) = \mathbb{P}(S_n \leq x) - \mathbb{P}(T_n \leq x) \) between distribution functions when \(f \) is chosen as a smooth approximation to the indicator function of \((-\infty, x] \).

The \(f \) used by Lindeberg was sandwiched between the indicator functions of \((-\infty, x] \) and \((-\infty, x + L] \), for a small \(L \) and was piecewise cubic in \((x, x + L) \). The Lipschitz constraint on the second derivative (actually, Lindeberg put a bound on the third derivative) forces \(L \) to be of the order \(A^{-1/2} \); a function with this degree of smoothness cannot negotiate the descent from 1 down to 0 in a shorter interval. Because this \(f \) fits between the two indicator functions,

\[
\mathbb{P}(S_n \leq x) \leq |\mathbb{P}(S_n) - \mathbb{P}(T_n)| + \mathbb{P}(T_n \leq x + L).
\]

As Le Cam shows, the first term on the righthand side is bounded by \(A\beta \), with \(\beta \) a sum of third absolute moments; the second term exceeds \(\mathbb{P}(T_n \leq x) \) by the probability that \(T_n \) lies in \((x, x + L] \), that is, by a term of order \(L \). An \(A \) of the order \(\beta^{-3/4} \) balances these two contributions to the difference \(\Delta(x) \) between distribution functions. A similar argument gives a similar looking lower bound. Since the method works uniformly in \(x \), this produces the bound of order \(\beta^{1/4} \) that Le Cam quotes from Lindeberg.

The same idea works for subsets of other linear spaces. If \(B \) is a subset of such a subset, the challenge is to find a smooth approximation \(f \) to the indicator function of \(B \); an \(f \) for which a Taylor expansion is possible; which takes values close to 1 well inside \(B \), and values near 0 well outside \(B \); and which makes the transition between these two levels as rapidly as possible near the boundary of \(B \). If a bound on

\[
\Delta(B) = \mathbb{P}(S_n \in B) - \mathbb{P}(T_n \in B)
\]

is sought, attention must be paid to how much mass the distribution of \(T_n \) puts in the transition region