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Comment

D. M. Titterington

1.. INTRODUCTION

It is a pleasure to comment on the paper by
Dr. O’Sullivan. The paper represents admirable blends
of review and new ideas, together with theory and
application.

It seems that the world is saturated with inverse
problems. At least, I am continually being surprised
to discover further manifestations of the general struc-
ture and, sometimes, substantively innovative devel-
opments. I was particularly grateful to discover the
work of Backus and Gilbert and to learn about the
notion and use of representers.

The paper, of course, discusses a particular class of
inverse problems, those which are ill-posed. Perhaps
the most surprising feature of the literature on this
topic is the comparatively late stage at which statis-
ticians have made an impact. After all, a major reason
for the inherent difficulties is the existence of the
random noise terms, ¢, in the model, and we note that
the ubiquitous prescription for estimation is of the
ridge-regression type, so it is certainly appropriate
territory for statisticians. I should like to base the
bulk of my remarks on the theme of what particular
contributions statisticians can make to the develop-
ment of the area.

Before I launch into this, I should admit that, as
the paper points out, other mathematical specialties
are also essential to a full treatment of the problem.
Particular areas are those of functional analysis,
matrix theory (singular-value decomposition), and
numerical methods for optimization. So far as the last
topic is concerned, the paper has concentrated on
linear or linearized problems, so that the optimality
criterion is a quadratic function for which the mini-
mizer can be written down explicitly. In other cases
we are left with a nonquadratic criterion, which leads
to the requirement of numerical methods; see, for
instance, the use of simulated annealing in finding a
regularized image restoration by Geman and Geman
(1984).

2. THE IMPACT OF STATISTICIANS

In this section I shall follow the pattern of the paper
in concentrating on linear problems. As a result, and
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with some apologies to the author for apparently triv-
ializing his achievements, the problems are “solved”
by ridge-regression estimators of which (3.1) is an
example. Crucial features of the prescription are a
matrix Q, and a scalar, A.

Depending on one’s statistical leanings, (X, Q) have
different interpretations. For a Bayesian, they are
hyperparameters in a notional prior density and the
ridge-regression estimator is itself interpretable as a
posterior mode. This Bayesian basis has the advan-
tage, in principle, of permitting the construction of
confidence regions for the true quantities of interest.
Of course, the validity of such regions is dependent on
whether the notional prior is a meaningful one. So far
as repeated sampling confidence statements are con-
cerned, more work requires to be done on the lines of
Wahba (1983b) to see to what extent Bayesian state-
ments carry similar confidence values from a frequen-
tist point of view.

Non-Bayesians interpret A and 2, somewhat differ-
ently. They regard Q, as the kernel of a roughness
penalty function, usually chosen to reflect some (ad-
mittedly “prior”) ideas about the local smoothness of
the underlying functions and/or to lead to tractable
prescriptions for the regularized estimators, in the
form of splines, for instance. If one can extrapolate
from the literature about kernel-based density esti-
mation, the choice of Q, (cf., the choice of kernel
function) should not be crucial to the performance of
the resulting estimator, computational difficulties
apart. Certainly, from the non-Bayesian point of view,
no one , seems sacrosanct. This last statement ap-
pears to conflict with the views of the adherents of
maximum entropy regularization, who contend that,
in a wide range of problems, a roughness penalty based

.on Shannon entropy is fundamentally special, an

opinion I do not share (Titterington, 1984).

The other parameter, A, called variously the
smoothing, ridge, or regularization parameter, is the
one to which the estimators should be more sensitive.
Furthermore it is here that the statistical impact is
most obvious. In principle there is no problem to the
Bayesian, in that A is a parameter of the prior which
is, of course, known! To other statisticians, it is nat-
ural to base the choice of A on some criterion of how
close the estimator is to the true, on average. As a
result, we obtain the mean squared error criteria of
Section 5 and the associated databased versions
such as cross-validatory choice, now familiar in
several types of smoothing problems. It has required
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