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Comment

Ronald A. Thisted

The statistics profession is fortunate indeed to have
such a friend as Professor Stewart. He has repeatedly
taken the time and energy to inform statisticians
about the relevance of numerical analysis to their day-
to-day work, and he has also taken the trouble to
understand and to explicate some of our problems
from our own point of view. This paper is an example
of what numerical analysis can have to say about
statistical problems, and it shows that there is a lot
that we statisticians can profit from. In particular,
Professor Stewart greatly improves our understanding
both of collinearity and of one indicator of collinear-
ity—the variance inflation factor.

As is true of most important papers, this one raises
as many questions as it answers. I would like to
comment on three issues that Professor Stewart only
touched on. First, although Stewart would relegate the
condition number x = || X || - | X" || to the dustbin for
statistical purposes, there is an important statistical
interpretation which rescues it. Second, Stewart’s pro-
cedures for using collinearity diagnostics depend upon
a measure :; of the importance of the jth regressor
variable. The notion of relative importance of a re-
gressor is an elusive one, however, particularly when
collinearity is present. Finally, I discuss the question
of whether statisticians should want collinearity di-
agnostics at all, and if so, what we should want from
them. Where possible, I adopt Stewart’s notation.
References to equations in his paper are preceded by
the letter “S.”

Ronald A. Thisted is Associate Professor, Department
of Statistics, The University of Chicago, 5734 Univer-
sity Avenue, Chicago, Illinois 60637.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
Statistical Science. FIKOIS

of ill-conditioning and its role in statistical analysis. Comput.
Statist. Data Anal. 4 103-120.

GuUNsT, R. F. (1983). Regression analysis with multicollinear
predictor variables. Comm. Statist. A—Theory Methods 12
2217-2260.

HENDRY, D. F. (1980). Econometrics—alchemy or science?
Economica 47 387-406.

LEAMER, E. E. (1978). Specification Searches. Wiley, New York.

SIMON, S. D. and LESAGE, J. P. (1986). The impact of collinearity
involving the intercept term on the numerical accuracy of
regression. Working paper, Dept. Applied Statistics and Oper-
ations Research, Bowling Green State Univ.

1. THE CONDITION NUMBER

Stewart gives a clear description of the numerical
relevance of the condition number . In numerical
analysis, its primary significance is the inequality
(S-3.4), the righthand side of which gives a good
indication of the effect of numerical errors in the
regressors on the regression coefficients themselves.
Because the statistical errors represented by e in the
regression model (S-2.1) are generally much larger in
magnitude than the numerical errors resulting from
rounding and truncation, the bound from (S-3.4) is
often so pessimistic as to be useless. In addition, the
condition number is not invariant with respect to
rescaling columns of X, so that interpretation of « is
dependent on the way in which X has been scaled.
Although Stewart discusses three alternatives for scal-
ing X—equal column scaling of X, scaling X to pro-
duce equal column scaling of E, and implicitly, scaling
X so that the components of 3 are roughly equal in
size—he finds no single choice compelling.

" The condition number of X has an important sta-
tistical interpretation in the regression problem which
is generally overlooked. Consider an arbitrary linear
combination of the estimated regression coefficients,
say & = v’f. The variance of & is given by

Var(a) = ¢’ (X’X)

= o0’ X"|2

From this computation it is apparent that the linear
combination with smallest variance (subject to the
constraint, say, that |v| = 1) has variance
o?[inf(X")]2 The coefficients v; which achieve this

minimum value explicitly give the linear combination
a; = vi{f about which the regression data are most

(1.1)
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