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Comment

Glenn Shafer

I found it a pleasure to read the articles by Dennis
V. Lindley and David Spiegelhalter. They present an
elegant case for the use of Bayesian (i.e., conditional
probability) methods in expert systems. Lindley pro-
vides a concise summary of arguments he and others
have developed over the last several decades in support
of the claim that rationality demands the use of con-
ditional probability. Spiegelhalter supplements this
with an account of what is actually being accomplished
using conditional probability in diagnostic systems,
and he also contributes some interesting new argu-
ments.

In response, let me first express my admiration for
the practical work Spiegelhalter reports on. The
GLADYS system is especially attractive, because it
brings close to reality the kind of probability calcula-
tion philosophers have always considered ideal—the
calculation of conditional probabilities on the basis of
massive and directly relevant frequency data. I share
Spiegelhalter’s excitement with the prospect that wi-
despread use of microcomputers will enable us to
attain this ideal much more often than we have in the
past.

WHY GENERALIZE PROBABILITY?

Spiegelhalter emphasizes capabilities of the
Bayesian language that are often overlooked. Weights
of conflict can be uséd to monitor Bayesian analyses,
and weights of evidence can be used to explain the
results. There are Bayesian definitions of imprecision
and ignorance. We do not need to generalize from
Bayes to belief functions in order to formalize these
concepts.

The desire to generalize Bayes does not spring,
however, from dissatisfaction with the ideal of condi-
tional probability. It springs from the realization that

’ this ideal is sometimes unattainable. Directly relevant
frequencies are often unattainable. Sometimes we can
make decent conditional probability arguments even
without such frequencies, but sometimes we cannot.
Sometimes we simply lack evidence for some of the
probability judgments that a given conditional prob-
ability analysis requires.

The only satisfactory description of uncertainty,
Lindley tells us, is probability. He is no less correct
than the man who believes that the only satisfactory
household is one with a dozen servants. It’s wonderful
if you can afford it.
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STANDARDS OF RATIONALITY

What should we say about the claim that rationality
demands we make Bayesian analyses regardless of the
availability of the ingredients? For my own part, I
find that every argument for this claim boils down to
another appreciation of the beauty of the Bayesian
ideal.

Lindley believes that Savage’s axioms are so self-
evident that their violation would look ridiculous.
But in fact these axioms derive their appeal from
the Bayesian ideal rather than vice versa. If we did
not have the picture of conditional probability and
expected utility in mind, we would not even be able to
understand most of Savage’s axioms (Shafer, 1986b).

The idea of a scoring rule also derives from the
Bayesian ideal rather than vice versa. It has relatively
little force in abstraction from that ideal. If we intend
to assign a number to each of two complementary
events and accept a penalty for each event based on
the number’s distance from one if the event happens
and its distance from zero if it fails, then we should
make the two numbers add to one. But how would we
explain this game to a naive listener? We would say
that the numbers are supposed to be like probabili-
ties—close to one for events that are expected to
happen and close to zero for events that are expected
to fail. The game fits the picture of additive, or
frequency-like, probability, and it is incomprehensible
outside that picture. It does not fit the theory of belief
functions, where a degree of belief close to zero indi-
cates inadequate evidence for the event, not assurance
that the event will fail.

Another argument for Bayes is based on the rela-
tively sharp preferences given by expected utility
calculations. We can calculate upper and lower expec-
tations from belief functions, but these will not give a
definite preference between two alternatives as often
as the Bayesian calculation will. But would we expect
such sharp preferences were it not for our fascination
with the Bayesian ideal? Would we really expect an
analysis of our evidence and pre-existent preferences
to tell us always exactly what to do, leaving no occa-
sion for caprice? In fact, human beings, unlike Buri-
dan’s ass, are capable of choosing without sufficient
reason, and they often use that capability. Building a
similar capability into a computer is one of the easier
tasks of artificial intelligence.

CONSTRUCTIVE PROBABILITY

In my contribution to this symposium, I say that
Bayesian analyses use games of chance as canonical
examples to which to compare actual evidence.
Lindley says such games provide a standard by which
to measure belief. There are commonalities here, but
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