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different 6, if the underlying process is not of the fitted
structure, although they lead to the same 6, if the
process is of the fitted structure. Suppose we fit an
AR(k) model. Consider, for example, the Gaussian
likelihood '

1. - 1
L(6) =ilog det =, +7, Y'Z'Y

and alternatively an M estimate

with Y, =0 if ¢t=<1

(if ¢? is unknown the estimate has to be modified, cf.
Martin and Yohai (1985)). Then,

1 1
ELr(9) = T log det =, + T tr{==71
and

k
EL%0) = EP(E asYt—s>-

s=0
If Y, is also an AR(k) process then both ELr(f) and
EL%(0) are minimized by the true parameter value,
while in the case where Y; is not an AR(k) process,
ELr(0) and EL%(0) are minimized by different values.
This means that one has not only to consider the

Comment

Jorma Rissanen

In this exceptionally lucid and comprehensive sur-
vey, Professor Hannan covers essentially all the im-
portant ideas in the theory of linear dynamic systems,
both deterministic and stochastic, developed during
the past twenty years or so. In addition, he describes
the more recently introduced new statistical ideas for
selecting such models for time series. I was particularly
impressed by the apparent ease and elegance with
which Professorr Hannan managed to explain the
rather intricate notions without any undue sacrifice
in precision.

I would like to comment on two issues of a general
nature raised by Professor Hannan. There have been
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quality of the estimation procedure, but also the “qual-
ity” of the estimated parameter.

In the formula below (5.8), Hannan should not
compare the estimate ®,(j) with ®(;j) but with the
estimated parameter ®,(j) (in the above sense), ob-
tained as a solution of the theoretical counterpart of
equation (5.8), and then ask in a second step how good
the ®,(j) represent the structure of the series (in fact,
the finitely many ®,(j), j = 1, ---, h, describe the
structure of the process “better” than the finitely
many tp(.])y.’ = 17 ] h)~

It is obvious that the choice of an estimation pro-
cedure doesn’t only imply an estimated parameter 6,
but also an optimal order. The results of Shibata
(1980) 'favoring AIC are only for the case where the
parameters are estimated by the Yule-Walker equa-
tions. It would be interesting to know whether using
other estimation procedures (e.g., robust ones) leads
to other order criteria.
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several attempts to apply the beautiful and deep ap-
proximation theory of Adamyan, Arov and Krein in a
statistical context for the purpose of obtaining an
optimal low order model reduction. As explained in
the paper, such a procedure begins with a high order
dynamic system, arrived at, perhaps, by applying
physical or chemical laws to a process, or by other
means. This is then, in the second stage, reduced to a
desired complexity, optimally in the sense of minimum
distance in a certain norm. The point I wish to make
is that because the initial system, which necessarily
has the status of a model rather than any “true”
system, is nonunique, the end result cannot be as-
signed any meaningful optimality property. Instead, it
is just an optimal approximation of an arbitrary model
of the data.

My remaining comments aim to amplify and,
perhaps, modify some of the concluding remarks in
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