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Fi6. 2. Plots of example data.
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Comment: On Exchangeability Judgments in
Predictive Modeling and the Role of Data in
Statistical Research

David Draper

Professor Rao has shared with us some thought- eling. The paper has four basic attributes, two of which
provoking ideas on prediction in growth curve mod- seem positive and two negative. On the positive side,
_—_ o the basic problem is predictive in nature, thereby
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