232

Comment

D. V. Hinkley and S. Wang

Professor Reid provides a stimulating review of the
theory and application of saddlepoint methods in
parametric statistical analysis. As is indicated in
Sections 6.4 and 6.6, similar approximations can be
applied to certain nonparametric statistical calcu-
lations. Robinson (1982) applies the saddlepoint
technique to obtain approximations to permutation dis-
tributions, and more recently Davison and Hinkley
(1988) have applied saddlepoint approximations to
several bootstrap and randomization problems. Great
numerical accuracy is evident in most of these appli-
cations. The corresponding theoretical development,
which requires some delicacy, is contained in Wang’s
Ph.D. dissertation for statistics which are sums of
random variables. We should like to summarize and
illustrate some of the results for a simple bootstrap
problem here.

Let (Xi, ..., X,) be independently sampled from
the continuous distribution function F whose mean is
u = E(X;). Suppose that we wish to calculate the
cumulative distribution function (CDF) G of the esti-
mation error D = X — u, where X =n' ¥ X,. If F
is known, and if the cumulant generating function
K(t) = log{[Z. e'®™ dF(x)} exists in a neighborhood
of t = 0 and is calculable, then a saddlepoint formula
will give a very accurate approximation to G (see
Section 6.3).

But suppose that F is completely unknown. The
bootstrap approach (Efron and Tibshirani, 1986) is to
calculate G with the empirical CDF F in place of F.
That is, one estimates G by G, the CDF of X* — %
when X* is the average of (X%, ..., X¥*) which are
sampled randomly with replacement from the fixed,
observed set (xi, ..., x,). A standard implementation

of the bootstrap would approximate G by Monte Carlo .

methods, e.g., by direct simulation of hundreds of
samples (X%, ..., X}) and calculation of empirical
cumulative frequencies for X — x. Saddlepoint
methods offer an alternative, efficient approach to
approximation to G.

In principle some care is needed here because F and
hence G, are discrete, and slightly different saddle-
point formulas apply in discrete cases. Suppose that
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the x;’s are given to m decimal places, so that X* is a
multiple of n7*10™™. Define

K@) = log{[ et=%) dF‘(x)}

(A1)
= log[n‘1 > expft(x; — 32)}].

Then the saddl~epoint approximation to G(d) =
Pr(X* — x = d| F) when d is a multiple of n™'10™™ is,
corresponding to Reid’s equation (28),

(®(w) — p(w) [107{1 — ™"}
. {nK"(T)}‘l/Z _ w—l],
d; #0,

Yo + Ye(2rn) R "(0)} K" (0)
— 141027 K" (0)}72,

L di =0,
where d, =d + n™'10™, K’(T) = d, and
w = [2n{Td; — K(d1)}]"*sgn(T).
Wang has proved that
(A3) G(d) = G,(d){1 + Ox(n 7},

but that the relative error is not strictly uniform in
the tails for fixed n. In this latter sense the saddlepoint
approximation is not as strong as usual, although in
practice this seems unimportant.

Recall that G is itself intended to be an approxi-
mation, to the continuous CDF G. For this purpose it
may be sensible to modify (A2) with a continuity
correction, i.e., to approximate G by

(A4) Gi(d) = G,(d — Yn™1107™).

Note that G, is continuous.

A somewhat more casual approach is to ignore the
discreteness, and to apply Reid’s (28) with K as in
(A1) replacing K. We denote the result by Gs. In fact,
as the following numerical example shows, there will
often be negligible differences among G;, G, and G,.

The numerical example involves the sample of
n = 10 numbers, with m = 1,

9.6 104 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8.

Approximate percentage points for X* — % have been
calculated using G;, G, and G,. Some of the results are

(A2) G.(d) =+
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