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Comment

Trevor Hastie and Robert Tibshirani

Professor Ramsay has written an informative paper

about a topic that is new (at least to us) and deserves

exposure. The techniques that he describes and his
software implementations are potentially useful in a
number of different areas. However, we found that
after careful reading of the paper and experimenting
with monotone splines, we are in substantial disagree-
ment with him over a number of important points. In
particular:

e The monotonicity assumption inherent in mono-
tone splines will sometimes (often?) be unwar-
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ranted. A more useful modeling technique allows
a choice of smoother for each variable, perhaps
between linear, monotone and nonmonotone, to-
gether with a strategy for selecting the appropri-
ate form. A general estimation procedure called
backfitting can be used to estimate models of this
kind.

e The number and position of knots can make a
difference and we can see no clear way to make
these choices. Other smoothing techniques such
as smoothing splines have the significant advan-
tage that a single smoothing parameter controls
the smoothness of the output.

e The number of parameters inherent in a mono-
tone spline is not “far fewer” than the number in
a cubic smoothing spline or other common
smoothers, given a comparable amount of smooth-
ness.

e The data analysis in the paper are somewhat weak
and potentially misleading.
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