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Comment

Randy Eubank

The author is to be congratulated on his insightful
and far-reaching article. This article represents a sub-
stantial contribution to the field of nonparametric
function estimation due in particular to the many new
application areas it will introduce to statisticians who
are concerned with developing such methodology. The
collection of examples Professor Ramsay presents
pose challenging problems, that are also of practical
importance, for study by nonparametric data model-
ers. It will be interesting to see the alternative solu-
tions that are sure to be developed as a result of this
article. I am delighted to get one of the first shots at
this and will suggest some other possible approaches
in Section 2 below.

I found myself in agreement with much of what
Professor Ramsay has said. My few points of disa-
greement are methodological, rather than philosophi-
cal, and therefore minor. My primary concerns are
related to the problems of knot selection and inference
in spline fitting. Here my experiences appear to be
almost the opposite of the author’s. I will elaborate
further on this in the next section.

It seems to me that nonparametric and paramecric
estimation methods are too often viewed as competi-
tors to one another. There is no reason that these
methods cannot or should not be used in tandem.
Indeed, it is foolish to do otherwise when conducting
exploratory data analyses. I would therefore like to
expand on Professor Ramsay’s point concerning his
example in Section 4.1. He notes that although his
nonparametric approach did not lead to new results,
it provided us with reassurance concerning a para-
metric fit. This is an illustration of how nonparametric
procedures can provide diagnostic checks concerning
the validity of parametric models. Whereas no diffi-
culties were uncovered with the parametric model for
the data in question, this need not always be the case.

* Serious parametric modeling deficiencies can be un-
covered by comparison with nonparametric fits. An
excellent illustration of this is the growth curve analy-
sis conducted by Gasser, Miiller, Kéhler, Molinari and
Prader (1984).

1. CHOOSING KNOTS, INFERENCE AND
RELATED ISSUES

The transformations Professor Ramsay employs are
splines of some specified order k with n knots having
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locations contained in a set ¢,. In practice &, n and ¢,
must all be selected in some fashion. I agree with the
author that the choice of k is generally not crucial;
with k = 4 (i.e., cubic splines) being statisfactory for
most purposes (provided the number and locations of
the knots have been chosen correctly). However, he
also indicates that good choices of n and ¢, can be
easily made and that the shape of a spline function is
robust with respect to these choices. This view is
inconsistent with my experiences and those of many
others.

To illustrate my point, consider the data in Fig-
ure 1 which represent a property, Y, of titanium as a
function of heat, X. (See de Boor (1978), page 222 for
the actual data.) Three cubic splines have been fitted
to the data via least squares, the first uses five uni-
formly spaced knots whereas the second has five knots
that have been selected more carefully. Notice that
although both fits have the same order and number of
knots, they are not even remotely similar in shape.
The spline based on uniformly spaced knots is also a
woeful fit being very little (if at all) better than fits
obtained using polynomials.

This example illustrates that knot placement can
be crucial for both the shape and quality of a spline
fit. Some ad hoc rules for good knot placement can be
found in Wold (1974). They are motivated by the same
considerations which led the author to propose his
two guidelines for this purpose in his Section 3.

A more objective knot selection can be accomplished
by optimizing the estimation criterion of interest with
respect to both the knot set ¢, and the vector a of
spline basis coefficients. For example, both ¢, and a
could have been chosen to maximize the sample like-
lihood in the examples discussed in Sections 4.1 and
4.2. This idea is by no means new and has even been
suggested by the author (Winsberg and Ramsay,
1980). The second fit in Figure 1 was obtained by
optimizing the knot locations and therefore illustrates
the gains to be realized from optimal knot selection.

Once the knot locations have been optimized, n can
be chosen using various model selection techniques. A
criterion such as that of Akaike (1974) would be easy
to use with likelihood-based fitting methods.

Unfortunately, I am not optimistic about the prac-
ticality of methods for optimal knot selection. In the
context of least squares estimation this is a very poorly
behaved nonlinear optimization problem (Jupp, 1978).
It is unlikely that matters will improve for more
general likelihood-based methods.

An alternative approach to selecting knots is to
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