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Comment

A. Owen, J. Koehler and S. Sharifzadeh

We have been running computer experiments re-
lated to semiconductor process design and recently
switched over to the paradigm described by the au-
thors. We have found it to be more flexible than
response surface methodology in handling determin-
istic responses. -

The Bayesian approach suggests how to interpolate,
extrapolate, assess uncertainty and construct designs.
To what extent do the Bayesian answers make sense,
if one does not hold the prior belief? The authors cite
several works in which connections are drawn between
well accepted interpolation methods and various
priors and give an example in which the uncertainty
assessment is accurate. It would be very interesting if
the uncertainty assessments were reasonbly accurate
for a large class of underlying functions. Have the
authors investigated this point? We doubt that the
Bayesian method will help in extrapolation (which we
suspect should be avoided) and thus are worried that
the optimal designs sometimes concentrate near the
center of the design space.

Our main comments are directed at the design prob-
lem and at estimation of the parameters of the covar-
iance model. Our applications have 5 to 10 input
variables and a like number of outputs. The programs
we use are fast enough to make it feasible to consider
50 or more runs.

Before addressing the design and estimation issues,
we wish to point out that ideas from exploratory data
analysis have a role to play in computer experimen-
tation. The authors (with their coworkers) have plot-
ted contours, trajectories and the additive main effects
(mentioned in Section 6) of the response functions.
We think their contributions are noteworthy and look
forward to further developments. When there are
many response variables, care should be taken in
optimizing a functional of the responses without first
considering the tradeoffs among competing goals. The
approach taken in Sharifzadeh, Koehler, Owen and
Shott (1989) is to evaluate the model functions at
thousands of input points and to explore the resulting
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(Becker, Chambers and Wilks, 1988).

DESIGN ISSUES

In the authors’ Figure 1, the design points are all
quite close to the center. We share the misgivings of
the authors, suspecting that this leads to a robustness
problem. Extrapolation by conditional expectation de-
pends to a far greater degree on the covariance func-
tion used than does interpolation. Thus outside of the
convex hull of the data, the predicted values will
depend strongly on hard-to-verify properties of the
model.

We have been using low discrepancy sequences,
mentioned in Section 7.5, as designs. These designs
are constructed so that the empirical measure of the
design points is close in a Kolmogorov-Smirnov sense
to the uniform measure on the cube. These should be
good designs in the case of large 6, when estimation is
difficult. Johnson, Moore and Ylvisaker (1988) char-
acterize the optimal designs in the large 6 limit. Min-
imizing the maximum distance from a point in the
cube to a design point leads to their version of G
optimality and maximizing the minimum distance be-
tween two sample points leads to their version of D
optimality. Low discrepancy sequences (such as Hal-
ton-Hammersley sequences) tend to have small, but
not minimal, maximum distances from points in the
cube.

We have found that sometimes some of the §; appear
quite small while others are large. That is a response
variable is heavily dependent on a few of the d inputs
and not very sensitive at all to the others. We may
not know in advance which input variables are the

. important ones or, more commonly, each output vari-

able may depend most strongly on a different small
set of inputs. This opens up the possibility of reducing
the dimension of the problem by considering the re-
sponse as a function of the most important inputs,
possibly with some noise due to the other inputs. For
instance, in our first experiment the thickness of a
layer of SiO, only depended on the oxidation temper-
ature. Unfortunately, our design (an all-bias design)
only used three distinct values of the temperature in
43 runs. If our experiment had had 43 nearly equis-
paced temperature values, the results would have been
more informative.

Low discrepancy designs have the added benefit
that when projected onto a cube defined by a subset
of the original variables they are still nearly uniform.
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