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Comment

E. L. Lehmann

1. INTRODUCTION

The present paper is the latest manifesto in Lind-
ley’s long crusade to wrest the Holy Land of Statistics
from the infidels. In it he has given a new name to
this heathen host: Berkeley, eponymously named after
the Bishop with whom Thomas Bayes had his own
disagreements, but also after the campus of the Uni-
versity of California, which “has perhaps the best
department broadly holding to that [non-Bayesian]
view.” This seems a bit unfair to my long-time col-
leagues Blackwell and Dubins, both enthusiastic
Bayesians, who are untainted except through such
guilt by association.

" As a Berkeleyan, both geographically and in Lind-
ley’s ideological sense, I shall take this opportunity to
comment on some of my agreements and disagree-
ments with the orthodox Bayesian view presented by
Lindley. Of course these are only my personal opin-
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ions; Berkeleyans are no more unified in their for-
mulations than are Bayesians.

2. ROLE OF THE SAMPLE SPACE

This is the topic of Sections 1.3 and 1.4 of Lindley’s
paper and is mentioned by him as a major point of
disagreement. He notes that the sample space is often
difficult to specify; I fully agree (see, for example,
Lehmann, 1988). Lindley refers to Jeffreys’ character-
ization of the sample space X as “the class of obser-
vations that might have been obtained but weren’t”
and (rightly) declares this class to be an artificial
construct. “The practical reality,” Lindley writes,
“is the data x (not X), the parameter-space O
and the likelihood function p(x| -) for fixed x and
variables 6.”

However, the sample space is of course only the
beginning of Berkeley’s violation of this dictum. Spec-
ifying a probability distribution (or class of distribu-
tions) assigns not only possible values to X but also
the possible probabilities of all these values.

The idea that the actual data set is only one of
many possible such sets that might have been obtained
under the given circumstances is central to the concept
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